Become a member of SEGH

Membership

Join a lively, research focussed network, which values and encourages interdisciplinary work across the spectrum of interactions between humans and the environment. 

SEGH has established a series of international conferences and meetings and promotes task force activities to address research and knowledge gaps in the area.  SEGH works with other societies and interest groups to further a better understanding of human interaction.  SEGH members receive a discount against SEGH conference fees.

SEGH has strong links to training and research projects, with a strong emphasis on encouraging young scientists.  Opportunities are developed to enable young researchers to participate in events where experienced professionals from industry and the public sector and academics meet under informal conditions to discuss research findings and relevant gaps in knowledge.

SEGH supports its own cutting edge, impact factor journal: Environmental Geochemistry and Health. In cooperation with Springer, SEGH members can enjoy online access to the journal.

You are warmly invited to join us as returning members or new applicants to the SEGH community.

Full Membership: £46

Full Membership (without journal): £26

Retired Membership: £26

Student Membership: £20

Academic Membership (LMICs, LICs and LDCs*): £25 (1 Year); £45 (2 Years)

Student Membership (LMICs, LICs and LDCs*): £10

**DAC country income status available at: http://www.oecd.org/dac/financing-sustainable-development/development-finance-standards/DAC_List_ODA_Recipients2014to2017_flows_En.pdf

Secure payments are handled by SagePay and will be charged in £GBP, but you will be billed in your local currency.

Membership runs for 12 months from the date of joining.  You will need to renew each year using the Join Us button on the homepage and re-enter your details to ensure we have up-to-date information.

1. Personal Details

2. Membership Infomation

3. Billing Address

NOTE: If you have a NON UK post code you should enter 000 in the billing post code field.

4. Shipping Address

Use billing address
Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Soil contamination and human health: Part 1—preface 2020-01-27
  • The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley 2020-01-27

    Abstract

    The paper presents the results of the model experiment on spring barley (Hordeum vulgare L.) grown in polluted soil. The influence of separate and combined application of wood biochar and heavy metal-tolerant bacteria on morpho-physiological, anatomical and ultrastructural parameters of H. vulgare L. has been studied. The joint application of biochar and bacteria increased the shoot length by 2.1-fold, root length by 1.7-fold, leaf length by 2.3-fold and dry weight by threefold compared to polluted variant, bringing the plant parameters to the control level. The maximal quantum yield of photosystem II decreased by 8.3% in H. vulgare L. grown in contaminated soil, whereas this decrease was less in biochar (7%), bacteria (6%) and in combined application of bacteria and biochar (5%). As for the transpiration rate, the H. vulgare L. grown in polluted soil has shown a decrease in transpiration rate by 26%. At the same time, the simultaneous application of biochar and bacteria has led to a significant improvement in the transpiration rate (14%). The H. vulgare L. also showed anatomical (integrity of epidermal, vascular bundles, parenchymal and chlorenchymal cells) and ultrastructural (chloroplasts, thylakoid system, plastoglobules, starch grains, mitochondria, peroxisomes, ribosomes, endoplasmic reticulum, vacuoles) changes, revealed by light-optical and transmission electron microscopy of leaf sections. The effects were most prominent in H. vulgare L., grown in polluted soil but gradually improved with application of biochar, bacteria and their combination. The use of biochar in combination with metal-tolerant bacteria is an efficient tool for remediation of soils, contaminated with heavy metals. The positive changes caused by the treatment can be consistently traced at all levels of plant organization.

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract