• SEGH

    Diverse scientific fields and multidisciplinary expertise brought together within an international community.

  • SEGH

    Diverse scientific fields and multidisciplinary expertise brought together within an international community.

  • SEGH

    Diverse scientific fields and multidisciplinary expertise brought together within an international community.

  • SEGH

    Diverse scientific fields and multidisciplinary expertise brought together within an international community.

  • SEGH

    Diverse scientific fields and multidisciplinary expertise brought together within an international community.

  • SEGH

    Diverse scientific fields and multidisciplinary expertise brought together within an international community.

  • SEGH

    Diverse scientific fields and multidisciplinary expertise brought together within an international community.

  • SEGH

    Diverse scientific fields and multidisciplinary expertise brought together within an international community.

  • SEGH

    Diverse scientific fields and multidisciplinary expertise brought together within an international community.

  • SEGH

    Diverse scientific fields and multidisciplinary expertise brought together within an international community

Society for Environmental Geochemistry and Health

SEGH was established in 1971 to provide a forum for scientists from various disciplines to work together in understanding the interaction between the geochemical environment and the health of plants, animals, and humans. We recognise the importance of interdisciplinary research. SEGH members represent expertise in a diverse range of scientific fields, such as biology, engineering, geology, hydrology, epidemiology, chemistry, medicine, nutrition, and toxicology.

 

Stay informed of new impact factor journal issues! Sign up for the Table of Contents Alert here 

SEGH Articles

SEGH 2015 Bratislava

| December 2014

The local organising institution of the 31st International Conference of the SEGH in 2015 was established in 1940 and performs the tasks of the State Geological Survey of the Slovak Republic.  continue reading...

Arsenic Biogeochemistry and Health

| November 2014

The success of the 29th SEGH conference produced a special issue of papers presenting recent advances in various aspects of environmental and health impacts of contaminants, published in Environmental Geochemistry and Health  continue reading...

Global dispersion of trace metals in South America

| November 2014

Pre-Hispanic metallurgical activities released enough metals to be transported throughout the entire South American continent.   continue reading...

Keep up to date

SEGH Events

SEGH 2015 31st International Conference

Bratislava

22 June 2015

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China 2015-05-20

    Abstract

    High-F groundwater is widely distributed in Xiji County, which endangers the safety of drinking water. In order to evaluate the key factors controlling the origin and geochemical mechanisms of F enrichment in groundwater at Xiji County, one hundred and five groundwater samples and sixty-two sediment samples were collected. Fluoride concentration in the groundwater samples ranged from 0.2 to 3.01 mg/L (mean 1.13 mg/L), with 17 % exceeding the WHO drinking water guideline value of 1.5 mg/L and 48 % exceeding the Chinese drinking water guideline value of 1.0 mg/L. High-F groundwaters were characterized by hydrochemical types of Na–HCO3 and Na–SO4·Cl, which were found in Quaternary sediment aquifer and in Tertiary clastic aquifer, respectively. Conditions favorable for F enrichment in groundwater included weakly alkaline pH (7.2–8.9), low concentration of Ca2+, and high concentrations of HCO3 and Na+. Calcite and fluorite were the main minerals controlling F concentration in groundwaters. The hydrolysis of F-bearing minerals in aquifer sediments was the more important process for F release in Tertiary clastic aquifer, which was facilitated by long residence time of groundwater, in comparison with Quaternary sediment aquifer. Cation exchange would also play important roles, which removed Ca2+ and Mg2+ and led to more free mobility of F in groundwater and permitted dissolution of fluorite, especially in Tertiary clastic aquifer. However, evapotranspiration and competing adsorption of B and HCO3 were the more important processes for F enrichment in Quaternary groundwater. Groundwater in Lower Cretaceous aquifer had relatively low F concentration, which was considered to be the potential drinking water resource.

  • Impact of biochar produced from post-harvest residue on the adsorption behavior of diesel oil on loess soil 2015-05-17

    Abstract

    The primary objective of this study was to investigate the effect of biochar, produced from wheat residue at different temperatures, on the adsorption of diesel oil by loess soil. Kinetic and equilibrium data were processed to understand the adsorption mechanism of diesel by biochar-affected loess soil; dynamic and thermodynamic adsorption experiments were conducted to characterize this adsorption. The surface features and chemical structure of biochar, modified at varying pyrolytic temperatures, were investigated using surface scanning electron microscopy and Fourier transform infrared analysis. The kinetic data showed that the adsorption of diesel oil onto loess soil could be described by a pseudo-second-order kinetic model, with the rate-controlling step being intraparticle diffusion. However, in the presence of biochar, boundary layer control and intraparticle diffusion were both involved in the adsorption. Besides, the adsorption equilibrium data were well described by the Freundlich isothermal model. The saturated adsorption capacity weakened as temperature increased, suggesting a spontaneous exothermic process. Thermodynamic parameter analysis showed that adsorption was mainly a physical process and was enhanced by chemical adsorption. The adsorption capacity of loess soil for diesel oil was weakened with increasing pH. The biochar produced by pyrolytic wheat residue increased the adsorption behavior of petroleum pollutants in loess soil.

  • Bioaccessibility of heavy metals in soils cannot be predicted by a single model in two adjacent areas 2015-05-16

    Abstract

    The objective of this study was to examine whether a single model could be used to predict the bioaccessibility of heavy metals in soils in two adjacent areas and to determine the feasibility of using existing data sets of total metal concentrations and soil property parameters (e.g., pH, total organic carbon, and soil texture) when predicting heavy metal bioaccessibility. A total of 103 topsoil samples were collected from two adjacent areas (Baotou and Bayan Obo). A total of 76 samples were collected from Baotou, and 27 were collected from Bayan Obo. The total and bioaccessible concentrations of arsenic (As), copper (Cu), lead (Pb), and zinc (Zn) were measured following complete composite acid digestion and a simple bioaccessibility extraction test. The average total concentrations of As, Cu, Pb, and Zn were 8.95, 27.53, 28.40, and 79.50 mg/kg, respectively, in Baotou and 18.12, 30.75, 38.09, and 87.62 mg/kg in Bayan Obo. Except for As, these values were similar in both areas. The average bioaccessible heavy metal concentrations (Bio-HMs) for each target HM were also similar. In Baotou, the average Bio-HM values for As, Cu, Pb, and Zn were 1.16, 3.76, 16.31, and 16.10 mg/kg, respectively, and 1.26, 2.51, 14.31, and 8.68 mg/kg in Bayan Obo. However, the relative bioaccessibilities for each HM in Baotou were greater than those in Bayan Obo, with mean values for Pb, Zn, Cu, and As of 57, 20, 17, and 12 %, respectively, in Baotou and 40, 11, 9, and 8 % in Bayan Obo. In both areas, prediction models were successfully created using heavy metal concentrations and soil physicochemical parameters; however, models of the same target element differed between the areas, which indicated that a common model for both sites does not exist. Bio-HMs were highly affected by soil properties, which were found to differ between the adjacent areas. In addition, soil properties with large variations played major roles in the predictive models. This study highlights the importance of incorporating physical and chemical parameters that vary greatly when building predictive models of heavy metal bioaccessibility in soil. A similarity in soil properties between areas might be a prerequisite for the creation of a common predictive model for soil Bio-HMs.