SEGH Events

30th SEGH Conference

30 June 2014
Newcastle, UK
Northumbria University, Newcastle-upon-Tyne, UK. 30th June to 4th July 2014 International Conference of the Society for Environmental Geochemistry and Health

Dear colleagues,

On behalf of the Organizing Committee of the 30th International SEGH conference (European Section), I would like to extend a warm welcome and invite you to join us at Northumbria University, Newcastle-upon-Tyne, UK, 30th June – 4th July, 2014.

This annual conference of the Society for Environmental Geochemistry and Health provides a forum for international scientists, consultants, regulatory authorities and other practitioners (public health / environmental health) with an interest in the links between environment and health and working in the broad area of environmental geochemistry. For the 30thSEGH we are keen to receive contributions on three core themes and two special sessions:

  •           Theme 1 - Chemical bioavailability and bioaccessibility
  •           Theme 2 - Risk Assessment, environmental exposure and health
  •           Theme 3 - Air & dust pollution and human health
  •           Special Session 1 - ‘Hydraulic Fracturing (Fracking) and Health’
  •           Special Session 2 - ‘Environmental iodine and the deficiency disorders’

We would also welcome submission of papers for any topics relevant to the aims of the Society.

 

The conference venue is the city campus of Northumbria University, in the heart of the city of Newcastle-upon-Tyne, North-East England, UK.

 

Abstract submission will open on December 2nd, 2013.

Abstract submission deadline is March 3rd, 2014

 

For further details please click here

 

Please save these key dates in your diary. More information will follow...

We look forward to welcoming you to Newcastle in 2014.

 

Best Regards,

Jane Entwistle [SEGH 2014 Chair]

 

Photographs courtesy of John Tan, Northumbria University

 

Dr Jane Entwistle

Head of Department,

Geography,

Northumbria University

Newcastle upon Tyne

NE1 8ST

Tel: 00 44 (0)191 227 3017  e-mail: jane.entwistle@northumbria.ac.uk

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Pollution profiles and risk assessment of PBDEs and phenolic brominated flame retardants in water environments within a typical electronic waste dismantling region 2014-12-14

    Abstract

    The aim of this study was to assess the pollution profiles of various typical brominated flame retardants in water and surface sediment near a typical electronic waste dismantling region in southern China. We found that polybrominated diphenyl ethers (PBDEs), 2,4,6-tribromophenol (TBP), pentabromophenol (PeBP), tetrabromobisphenol A (TBBPA), and bisphenol A (BPA) were ubiquitous in the water and sediment samples collected in the study region. In water, Σ19PBDEs (sum of all 20 PBDE congeners studied except BDE-209, which was below the detection limit) levels ranged from 0.31 to 8.9 × 102 ng L−1. TBP, PeBP, TBBPA, and BPA concentrations in the water samples ranged from not being detectable (nd—under the detection limit) to 3.2 × 102 (TBP), from nd to 37 (PeBP), from nd to 9.2 × 102 (TBBPA) and from nd–8.6 × 102 ng L−1 (BPA). In sediment, Σ19PBDEs ranged from nd to 5.6 × 103 ng g−1, while BDE-209 was the predominant congener, with a range of nd to 3.5 × 103 ng g−1. Tri- to hepta-BDE concentrations were significantly (p < 0.01) correlated with each other, except for BDE-71 and BDE-183, and octa- to nona-BDEs concentrations were significantly (p < 0.05) correlated with each other, except for BDE-208. BDE-209 was not significantly correlated with tri- to nona-BDEs. Risk assessments indicated that the water and sediment across the sampling sites posed no estrogenic risk. However, different eco-toxicity risk degrees at three trophic levels did exist at most sampling sites.

  • Particle size distribution and air pollution patterns in three urban environments in Xi’an, China 2014-12-13

    Abstract

    Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m3), PM2.5 (213 µg/m3), PM1 (148 µg/m3) concentrations in the office were 10–50 % higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m3. Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors.

  • Comparison of physical and chemical properties of ambient aerosols during the 2009 haze and non-haze periods in Southeast Asia 2014-12-13

    Abstract

    Recurrent smoke-haze episodes that occur in Southeast Asia (SEA) are of much concern because of their environmental and health impacts. These haze episodes are mainly caused by uncontrolled biomass and peat burning in Indonesia. Airborne particulate matter (PM) samples were collected in the southwest coast of Singapore from 16 August to 9 November in 2009 to assess the impact of smoke-haze episodes on the air quality due to the long-range transport of biomass and peat burning emissions. The physical and chemical characteristics of PM were investigated during pre-haze, smoke-haze, and post-haze periods. Days with PM2.5 mass concentrations of ≥35 μg m−3 were considered as smoke-haze events. Using this criterion, out of the total 82 sampling days, nine smoke-haze events were identified. The origin of air masses during smoke-haze episodes was studied on the basis of HYSPLIT backward air trajectory analysis for 4 days. In terms of the physical properties of PM, higher particle surface area concentrations and particle gravimetric mass concentrations were observed during the smoke-haze period, but there was no consistent pattern for particle number concentrations during the haze period as compared to the non-haze period except that there was a significant increase at about 08:00, which could be attributed to the entrainment of PM from aloft after the breakdown of the nocturnal inversion layer. As for the chemical characteristics of PM, among the six key inorganic water-soluble ions (Cl, NO3 , nss-SO4 2−, Na+, NH4 +, and nss-K+) measured in this study, NO3 , nss-SO4 2−, and NH4 + showed a significant increase in their concentrations during the smoke-haze period together with nss-K+. These observations suggest that the increased atmospheric loading of PM with higher surface area and increased concentrations of optically active secondary inorganic aerosols [(NH4)2SO4 or NH4HSO4 and NH4NO3] resulted in the atmospheric visibility reduction in SEA due to the advection of biomass and peat burning emissions.