SEGH Events

30th SEGH Conference

30 June 2014
Newcastle, UK
Northumbria University, Newcastle-upon-Tyne, UK. 30th June to 4th July 2014 International Conference of the Society for Environmental Geochemistry and Health

Dear colleagues,

On behalf of the Organizing Committee of the 30th International SEGH conference (European Section), I would like to extend a warm welcome and invite you to join us at Northumbria University, Newcastle-upon-Tyne, UK, 30th June – 4th July, 2014.

This annual conference of the Society for Environmental Geochemistry and Health provides a forum for international scientists, consultants, regulatory authorities and other practitioners (public health / environmental health) with an interest in the links between environment and health and working in the broad area of environmental geochemistry. For the 30thSEGH we are keen to receive contributions on three core themes and two special sessions:

  •           Theme 1 - Chemical bioavailability and bioaccessibility
  •           Theme 2 - Risk Assessment, environmental exposure and health
  •           Theme 3 - Air & dust pollution and human health
  •           Special Session 1 - ‘Hydraulic Fracturing (Fracking) and Health’
  •           Special Session 2 - ‘Environmental iodine and the deficiency disorders’

We would also welcome submission of papers for any topics relevant to the aims of the Society.

 

The conference venue is the city campus of Northumbria University, in the heart of the city of Newcastle-upon-Tyne, North-East England, UK.

 

Abstract submission will open on December 2nd, 2013.

Abstract submission deadline is March 3rd, 2014

 

For further details please click here

 

Please save these key dates in your diary. More information will follow...

We look forward to welcoming you to Newcastle in 2014.

 

Best Regards,

Jane Entwistle [SEGH 2014 Chair]

 

Photographs courtesy of John Tan, Northumbria University

 

Dr Jane Entwistle

Head of Department,

Geography,

Northumbria University

Newcastle upon Tyne

NE1 8ST

Tel: 00 44 (0)191 227 3017  e-mail: jane.entwistle@northumbria.ac.uk

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China 2015-05-20

    Abstract

    High-F groundwater is widely distributed in Xiji County, which endangers the safety of drinking water. In order to evaluate the key factors controlling the origin and geochemical mechanisms of F enrichment in groundwater at Xiji County, one hundred and five groundwater samples and sixty-two sediment samples were collected. Fluoride concentration in the groundwater samples ranged from 0.2 to 3.01 mg/L (mean 1.13 mg/L), with 17 % exceeding the WHO drinking water guideline value of 1.5 mg/L and 48 % exceeding the Chinese drinking water guideline value of 1.0 mg/L. High-F groundwaters were characterized by hydrochemical types of Na–HCO3 and Na–SO4·Cl, which were found in Quaternary sediment aquifer and in Tertiary clastic aquifer, respectively. Conditions favorable for F enrichment in groundwater included weakly alkaline pH (7.2–8.9), low concentration of Ca2+, and high concentrations of HCO3 and Na+. Calcite and fluorite were the main minerals controlling F concentration in groundwaters. The hydrolysis of F-bearing minerals in aquifer sediments was the more important process for F release in Tertiary clastic aquifer, which was facilitated by long residence time of groundwater, in comparison with Quaternary sediment aquifer. Cation exchange would also play important roles, which removed Ca2+ and Mg2+ and led to more free mobility of F in groundwater and permitted dissolution of fluorite, especially in Tertiary clastic aquifer. However, evapotranspiration and competing adsorption of B and HCO3 were the more important processes for F enrichment in Quaternary groundwater. Groundwater in Lower Cretaceous aquifer had relatively low F concentration, which was considered to be the potential drinking water resource.

  • Impact of biochar produced from post-harvest residue on the adsorption behavior of diesel oil on loess soil 2015-05-17

    Abstract

    The primary objective of this study was to investigate the effect of biochar, produced from wheat residue at different temperatures, on the adsorption of diesel oil by loess soil. Kinetic and equilibrium data were processed to understand the adsorption mechanism of diesel by biochar-affected loess soil; dynamic and thermodynamic adsorption experiments were conducted to characterize this adsorption. The surface features and chemical structure of biochar, modified at varying pyrolytic temperatures, were investigated using surface scanning electron microscopy and Fourier transform infrared analysis. The kinetic data showed that the adsorption of diesel oil onto loess soil could be described by a pseudo-second-order kinetic model, with the rate-controlling step being intraparticle diffusion. However, in the presence of biochar, boundary layer control and intraparticle diffusion were both involved in the adsorption. Besides, the adsorption equilibrium data were well described by the Freundlich isothermal model. The saturated adsorption capacity weakened as temperature increased, suggesting a spontaneous exothermic process. Thermodynamic parameter analysis showed that adsorption was mainly a physical process and was enhanced by chemical adsorption. The adsorption capacity of loess soil for diesel oil was weakened with increasing pH. The biochar produced by pyrolytic wheat residue increased the adsorption behavior of petroleum pollutants in loess soil.

  • Bioaccessibility of heavy metals in soils cannot be predicted by a single model in two adjacent areas 2015-05-16

    Abstract

    The objective of this study was to examine whether a single model could be used to predict the bioaccessibility of heavy metals in soils in two adjacent areas and to determine the feasibility of using existing data sets of total metal concentrations and soil property parameters (e.g., pH, total organic carbon, and soil texture) when predicting heavy metal bioaccessibility. A total of 103 topsoil samples were collected from two adjacent areas (Baotou and Bayan Obo). A total of 76 samples were collected from Baotou, and 27 were collected from Bayan Obo. The total and bioaccessible concentrations of arsenic (As), copper (Cu), lead (Pb), and zinc (Zn) were measured following complete composite acid digestion and a simple bioaccessibility extraction test. The average total concentrations of As, Cu, Pb, and Zn were 8.95, 27.53, 28.40, and 79.50 mg/kg, respectively, in Baotou and 18.12, 30.75, 38.09, and 87.62 mg/kg in Bayan Obo. Except for As, these values were similar in both areas. The average bioaccessible heavy metal concentrations (Bio-HMs) for each target HM were also similar. In Baotou, the average Bio-HM values for As, Cu, Pb, and Zn were 1.16, 3.76, 16.31, and 16.10 mg/kg, respectively, and 1.26, 2.51, 14.31, and 8.68 mg/kg in Bayan Obo. However, the relative bioaccessibilities for each HM in Baotou were greater than those in Bayan Obo, with mean values for Pb, Zn, Cu, and As of 57, 20, 17, and 12 %, respectively, in Baotou and 40, 11, 9, and 8 % in Bayan Obo. In both areas, prediction models were successfully created using heavy metal concentrations and soil physicochemical parameters; however, models of the same target element differed between the areas, which indicated that a common model for both sites does not exist. Bio-HMs were highly affected by soil properties, which were found to differ between the adjacent areas. In addition, soil properties with large variations played major roles in the predictive models. This study highlights the importance of incorporating physical and chemical parameters that vary greatly when building predictive models of heavy metal bioaccessibility in soil. A similarity in soil properties between areas might be a prerequisite for the creation of a common predictive model for soil Bio-HMs.