SEGH Events

30th SEGH Conference

30 June 2014
Newcastle, UK
Northumbria University, Newcastle-upon-Tyne, UK. 30th June to 4th July 2014 International Conference of the Society for Environmental Geochemistry and Health

Dear colleagues,

On behalf of the Organizing Committee of the 30th International SEGH conference (European Section), I would like to extend a warm welcome and invite you to join us at Northumbria University, Newcastle-upon-Tyne, UK, 30th June – 4th July, 2014.

This annual conference of the Society for Environmental Geochemistry and Health provides a forum for international scientists, consultants, regulatory authorities and other practitioners (public health / environmental health) with an interest in the links between environment and health and working in the broad area of environmental geochemistry. For the 30thSEGH we are keen to receive contributions on three core themes and two special sessions:

  •           Theme 1 - Chemical bioavailability and bioaccessibility
  •           Theme 2 - Risk Assessment, environmental exposure and health
  •           Theme 3 - Air & dust pollution and human health
  •           Special Session 1 - ‘Hydraulic Fracturing (Fracking) and Health’
  •           Special Session 2 - ‘Environmental iodine and the deficiency disorders’

We would also welcome submission of papers for any topics relevant to the aims of the Society.


The conference venue is the city campus of Northumbria University, in the heart of the city of Newcastle-upon-Tyne, North-East England, UK.


Abstract submission will open on December 2nd, 2013.

Abstract submission deadline is March 3rd, 2014


For further details please click here


Please save these key dates in your diary. More information will follow...

We look forward to welcoming you to Newcastle in 2014.


Best Regards,

Jane Entwistle [SEGH 2014 Chair]


Photographs courtesy of John Tan, Northumbria University


Dr Jane Entwistle

Head of Department,


Northumbria University

Newcastle upon Tyne


Tel: 00 44 (0)191 227 3017  e-mail:

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Can abundance of methanogen be a good indicator for CH 4 flux in soil ecosystems? 2015-12-01


    Methane, which is produced by methanogenic archaea, is the second most abundant carbon compound in the atmosphere. Due to its strong radiative forcing, many studies have been conducted to determine its sources, budget, and dynamics. However, a mechanistic model of methane flux has not been developed thus far. In this study, we attempt to examine the relevance of the abundance of methanogen as a biological indicator of methane flux in three different types of soil ecosystems: permafrost, rice paddy, and mountainous wetland. We measured the annual average methane flux and abundance of methanogen in the soil ecosystems in situ. The correlation between methane flux and the abundance of methanogen exists only under a specific biogeochemical conditions such as SOM of higher than 60 %, pH of 5.6–6.4, and water-saturated. Except for these conditions, significant correlations were absent. Therefore, microbial abundance information can be applied to a methane flux model selectively depending on the biogeochemical properties of the soil ecosystem.

  • Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures 2015-12-01


    The phosphorus (P) adsorption characteristic of sesame straw biochar prepared with different activation agents and pyrolysis temperatures was evaluated. Between 0.109 and 0.300 mg L−1 in the form of inorganic phosphate was released from raw sesame straw biochar in the first 1 h. The release of phosphate was significantly enhanced from 62.6 to 168.2 mg g−1 as the pyrolysis temperature increased. Therefore, sesame straw biochar cannot be used as an adsorbent for P removal without change in the physicochemical characteristics. To increase the P adsorption of biochar in aqueous solution, various activation agents and pyrolysis temperatures were applied. The amount of P adsorbed from aqueous solution by biochar activated using different activation agents appeared in the order ZnCl2 (9.675 mg g−1) > MgO (8.669 mg g−1) ⋙ 0.1N-HCl > 0.1N-H2SO4 > K2SO4 ≥ KOH ≥ 0.1N-H3PO4, showing ZnCl2 to be the optimum activation agent. Higher P was adsorbed by the biochar activated using ZnCl2 under different pyrolysis temperatures in the order 600 °C > 500 °C > 400 °C > 300 °C. Finally, the amount of adsorbed P by activated biochar at different ratios of biochar to ZnCl2 appeared in the order 1:3 ≒ 1:1 > 3:1. As a result, the optimum ratio of biochar to ZnCl2 and pyrolysis temperature were found to be 1:1 and 600 °C for P adsorption, respectively. The maximum P adsorption capacity by activated biochar using ZnCl2 (15,460 mg kg−1) was higher than that of typical biochar, as determined by the Langmuir adsorption isotherm. Therefore, the ZnCl2 activation of sesame straw biochar was suitable for the preparation of activated biochar for P adsorption.

  • Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions 2015-12-01


    Adsorption of As(V) on various clay minerals including kaolinite (KGa-1), montmorillonite (SWy-1) and nontronites (NAU-1 and NAU-2), and subsequent bioreduction of sorbed As(V) to As(III) by bacterium Shewanella putrefaciens strain CN-32 were investigated. Nontronites showed relatively higher sorption capacity for As(V) primarily due to higher iron oxide content. Freundlich equation well described the sorption of As(V) on NAU-1, NAU-2 and SWy-1, while As(V) sorption isotherm with KGa-1 fitted well in the Langmuir model. The bacterium rapidly reduced 50 % of dissolved As(V) to As(III) in 2 h, followed by its complete reduction (>ca. 98 %) within 12 h. In contrast, sorption of As(V) to the mineral surfaces interferes with the activity of bacterium, resulting in low bioreduction of As(V) by 27 % for 5 days of incubation. S. putrefaciens also promoted the reduction of Fe(III) present in the clay mineral to Fe(II). This study indicates that the sorption and subsequent bioreduction of As(V) on clay minerals can significantly influence the mobility of As(V) in subsurface environment.