SEGH Events

7th International Workshop on Chemical Bioavailability

04 November 2013
British Geological Survey, Nottingham, UK
The 7th IWCB is a premier event for highlighting research in chemical bioavailability in the environment.

On behalf of the International Organising Committee, the British Geological Survey (BGS) and the University of Nottingham invite everyone to discuss and exchange new and emerging scientific breakthroughs in chemical bioavailability at the 7th International Workshop on Chemical Bioavailability (IWCB). This series is emerging as a premier event for highlighting research in chemical bioavailability in the environment.  We hope that the workshop will provide the opportunity for delegates to exchange knowledge and experience and to further develop a common view on contaminant bioavailability.

Why attend?

  • network with leading figures in the field
  • visit the exhibition to discover new products and services to enhance your research

Call for papers

We invite you to submit an abstract for an oral or poster presentation.  Please use the template on our webpage http://www.bgs.ac.uk/news/events/bioavailabilityWorkshop/home.html and send your completed submission to Cbio7@bgs.ac.uk

 

Themes

  • analytical methodologies
  • models - QSAR for organic bioaccessibility, predictive, spatial, soil properties
  • reference materials
  • case studies on risk based land management
  • microbial bioavailability
  • essential nutrients
  • risk assessment and communication
  • plant uptake
  • chemomimetics
  • sentinel species
  • nano-materials
  • oral, inhalation and dermal pathways

 

Dr Mark Cave, British Geological Survey

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Outdoor air particle-bound trace metals in four selected communities in Ibadan, Nigeria 2014-08-01

    Abstract

    Trace metal concentrations were determined in particulate matter (PM10) in ambient air of four purposively selected residential areas in Ibadan, Nigeria namely Bodija market (BM), Ojo Park (OP), Oluyole Estate (OE) and University of Ibadan (UI). PM10 was determined in the morning (7–10 a.m.) and afternoon (2–5 p.m.) for 12 weeks in the dry season months of January–March using a volumetric sampler following standard procedures and levels compared with WHO guideline limits. Glass-fibre filter papers exposed to the particulate matter were digested using appropriate acid mixtures, and the digest analysed for trace metals including Ni, Cr, Mn, Zn, and Pb using ICPMS method and levels compared with WHO limits. Data was analysed using ANOVA and Pearson correlation test at 5 % level of significance. The highest mean PM10 concentrations 502.3 ± 39.9 μg/m3 were recorded in the afternoon period at BM, while the lowest concentration 220.6 ± 69.9 μg/m3 was observed in the morning hours at UI. There was a significant difference between the PM10 levels across the various locations (p < 0.05), and all the levels were higher than WHO limit of 50 μg/m3. The highest levels of Ni, Zn and Pb were recorded at BM, which also had the highest PM10 burden. The trend in Pb levels across the locations was BM > UI > OP > OE with the highest level 5.70 μg/m3 in BM nearly fourfolds WHO limits of 1.5 μg/m3. There was a significant correlation between PM10 and Ni (p < 0.05).Urban communities with increased human activities especially motor traffic recorded both higher levels of PM10 and toxic trace metals. There is need to carry out source apportionment to establish the origin of these trace metals in future studies.

  • PAHs in organic film on glass window surfaces from central Shanghai, China: distribution, sources and risk assessment 2014-08-01

    Abstract

    Polycyclic aromatic hydrocarbons (PAHs) concentrations were analysed in the organic film on the glass surfaces of different functional areas in central Shanghai. Concentration levels of total PAHs in the organic film ranged from 1,348.5 to 4,007.9 ng m−2. The concentration of PAHs was lowest in parks and green spaces (1,348.5 ng m−2) and highest in traffic zones (4,007.9 ng m−2). A concentration gradient of total PAHs was observed as follows: traffic zones > commercial areas > cultural and educational areas > parks and green spaces. The distribution of PAHs was characterised by 3–4 ring PAHs in the study areas. The most abundant PAHs were phenanthrene (20.5 %), fluorene (16.7 %), pyrene (12.4 %) and chrysene (Chry) (11.2 %). The mass of the bulk film was composed of organic and inorganic compounds and ranged from 246 to 1,288 mg m−2. The bulk film thickness varied from 144 to 757 nm in the different functional areas. The ratios of An/178 and Fl/202 and principal component analysis suggested that PAHs came mainly from the mixed sources of fossil fuel, coal and incomplete combustion of biomass. Benzo[a]anthracene (BaA)/Chry is not suitable for use as a tracer for the transmission process of PAHs because of the rapid depletion of BaA in the organic film by photooxidation during daylight hours. The concentration of benzo[a]pyrene equivalent (BaPeq) varied from 21 to 701 ng g−1, and the major carcinogenic contributors of the 16 PAHs were BaP, DahA, B[b/k]F and InP, accounting for 83 % of BaPeq.

  • Exposure assessment of heavy metals (Cd, Hg, and Pb) by the intake of local foods from Zhejiang, China 2014-08-01

    Abstract

    Considering the environmental pollution, food safety is of great concern to the consumers. The present study was conducted to assess the health risk of cadmium (Cd), mercury (Hg), and lead (Pb) through the dietary intake in Zhejiang, China. Eight hundred and sixty two food samples including aquatic products, meat, vegetables, milk and dairy products, and cereal grains were analyzed. Only 2.44 % (Cd), 1.39 % (Hg), and 1.51 % (Pb) of the samples exceeded the maximum allowable concentration set by Chinese Ministry of Health. The average dietary intakes of Cd, Hg, and Pb were estimated to be 0.26, 0.14, and 0.55 μg/kg bw/day, respectively. Compared with the reference doses, the mean exposure of Cd, Hg, and Pb was all less than the tolerable intake value. Only at the 95th percentile level, Cd and Hg exposure exceeded the values of tolerable intakes by 40 and 277 %, respectively. It indicates that there is low health risk to the dietary exposure of Cd, Hg, and Pb for general people in Zhejiang province, China.