SEGH Events

7th International Workshop on Chemical Bioavailability

04 November 2013
British Geological Survey, Nottingham, UK
The 7th IWCB is a premier event for highlighting research in chemical bioavailability in the environment.

On behalf of the International Organising Committee, the British Geological Survey (BGS) and the University of Nottingham invite everyone to discuss and exchange new and emerging scientific breakthroughs in chemical bioavailability at the 7th International Workshop on Chemical Bioavailability (IWCB). This series is emerging as a premier event for highlighting research in chemical bioavailability in the environment.  We hope that the workshop will provide the opportunity for delegates to exchange knowledge and experience and to further develop a common view on contaminant bioavailability.

Why attend?

  • network with leading figures in the field
  • visit the exhibition to discover new products and services to enhance your research

Call for papers

We invite you to submit an abstract for an oral or poster presentation.  Please use the template on our webpage http://www.bgs.ac.uk/news/events/bioavailabilityWorkshop/home.html and send your completed submission to Cbio7@bgs.ac.uk

 

Themes

  • analytical methodologies
  • models - QSAR for organic bioaccessibility, predictive, spatial, soil properties
  • reference materials
  • case studies on risk based land management
  • microbial bioavailability
  • essential nutrients
  • risk assessment and communication
  • plant uptake
  • chemomimetics
  • sentinel species
  • nano-materials
  • oral, inhalation and dermal pathways

 

Dr Mark Cave, British Geological Survey

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Total arsenic concentrations in Chinese children’s urine by different geographic locations, ages, and genders 2017-04-26

    Abstract

    Little is known about the variation of Chinese children’s exposure to arsenic by geography, age, gender, and other potential factors. The main objective of this study was to investigate the total arsenic concentration in Chinese children’s urine by geographic locations, ages, and genders. In total, 259 24-h urine samples were collected from 210 2- to 12-year-old children in China and analyzed for total arsenic and creatinine concentrations. The results showed that the upper limit (upper limit of the 90% confidence interval for the 97.5 fractile) was 27.51 µg/L or 55.88 µg/g creatinine for Chinese children. The total urinary arsenic levels were significantly different for children in Guangdong, Hubei, and Gansu provinces (P < 0.05), where the upper limits were 24.29, 58.70, and 44.29 µg/g creatinine, respectively. In addition, the total urinary arsenic levels were higher for 2- to 7-year-old children than for 7- to 12-year-old children (P < 0.05; the upper limits were 59.06 and 44.29 µg/g creatinine, respectively) and higher for rural children than for urban children (P < 0.05; the upper limits were 59.06 and 50.44 µg/g creatinine, respectively). The total urinary arsenic levels for boys were not significantly different from those for girls (P > 0.05), although the level for boys (the upper limit was 59.30 µg/g) was slightly higher than that for girls (the upper limit was 58.64 µg/g creatinine). Because the total urinary arsenic concentrations are significantly different for general populations of children in different locations and age groups, the reference level of total urinary arsenic might be dependent on the geographic site and the child’s age.

  • Distribution, seasonal variation and inhalation risks of polychlorinated dibenzo- p -dioxins and dibenzofurans, polychlorinated biphenyls and polybrominated diphenyl ethers in the atmosphere of Beijing, China 2017-04-26

    Abstract

    Spatial distribution, seasonal variation and potential inhalation risks of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were investigated in the atmosphere of Beijing, using passive air samplers equipped with polyurethane foam disks. Concentrations of ΣPCDD/Fs, ΣPCBs and ΣPBDEs ranged from 8.4 to 179 fg WHO2005-TEQ/m3, 38.6–139 and 1.5–176 pg/m3, respectively. PCDFs showed higher air concentrations than those of PCDDs, indicating the influence of industrial activities and other combustion processes. The non-Aroclor congener, PCB-11, was detected in air (12.3–99.4 pg/m3) and dominated the PCB congener profiles (61.7–71.5% to ∑PCBs). The congener patterns of PBDEs showed signatures from both penta-BDE and octa-BDE products. Levels of PCDD/Fs, PCBs and PBDEs at the industrial and residential sites were higher than those at rural site, indicating human activities in urban area as potential sources. Higher air concentrations of PCDD/Fs, PCBs and PBDEs were observed in summer, which could be associated with atmospheric deposition process, re-volatilization from soil surface and volatilization from use of technical products, respectively. Results of inhalation exposure and cancer risk showed that atmospheric PCDD/Fs, dioxin-like PCBs and PBDEs did not cause high risks to the local residents of Beijing. This study provides further aid in evaluating emission sources, influencing factors and potential inhalation risks of the persistent organic pollutants to human health in mega-cities of China.

  • Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology 2017-04-26

    Abstract

    The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

    Graphical Abstract