SEGH Events

7th International Workshop on Chemical Bioavailability

04 November 2013
British Geological Survey, Nottingham, UK
The 7th IWCB is a premier event for highlighting research in chemical bioavailability in the environment.

On behalf of the International Organising Committee, the British Geological Survey (BGS) and the University of Nottingham invite everyone to discuss and exchange new and emerging scientific breakthroughs in chemical bioavailability at the 7th International Workshop on Chemical Bioavailability (IWCB). This series is emerging as a premier event for highlighting research in chemical bioavailability in the environment.  We hope that the workshop will provide the opportunity for delegates to exchange knowledge and experience and to further develop a common view on contaminant bioavailability.

Why attend?

  • network with leading figures in the field
  • visit the exhibition to discover new products and services to enhance your research

Call for papers

We invite you to submit an abstract for an oral or poster presentation.  Please use the template on our webpage http://www.bgs.ac.uk/news/events/bioavailabilityWorkshop/home.html and send your completed submission to Cbio7@bgs.ac.uk

 

Themes

  • analytical methodologies
  • models - QSAR for organic bioaccessibility, predictive, spatial, soil properties
  • reference materials
  • case studies on risk based land management
  • microbial bioavailability
  • essential nutrients
  • risk assessment and communication
  • plant uptake
  • chemomimetics
  • sentinel species
  • nano-materials
  • oral, inhalation and dermal pathways

 

Dr Mark Cave, British Geological Survey

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • The arsenic contamination of rice in Guangdong Province, the most economically dynamic provinces of China: arsenic speciation and its potential health risk 2014-10-07

    Abstract

    Rice is a staple food in China, but it may contain toxic heavy metals. Hence, the concentrations of arsenic (As) species (AsIII, AsV, MMA and DMA) were evaluated in 260 rice samples from 13 cities of Guangdong Province, the most economically dynamic provinces of China. The levels of sum concentrations of As species in rice samples varied from non-detect to 225.58 ng g−1, with an average value of 57.27 ng g−1. The mean concentrations of the major As species detected in rice samples were in the order AsIII (34.77 ng g−1) > AsV (9.34 ng g−1) > DMA (8.33 ng g−1) > MMA (4.82 ng g−1). The rice samples of Guangdong Province were categorized as inorganic As type. Significant geographical variation of As speciation existed in rice samples of 13 cities of Guangdong Province by chi-square test (p < 0.05). The average human weekly intakes of inorganic As via rice consumption in Guangdong Province, southern China, were 1.91 µg kg−1 body weight. Hazard quotients of total As via rice consumption of adults in 13 cities ranged from 0.06 to 0.30, indicating the As contents in rice from Guangdong Province had no potential adverse impact on human health.

  • Selected papers from the 29th SEGH Conference on Environmental Geochemistry and Health 2014-10-01
  • Platinum in PM2.5 of the metropolitan area of Mexico City 2014-10-01

    Abstract

    The increase in platinum (Pt) in the airborne particulate matter with size ≤2.5 µm (PM2.5) in urban environments may be interpreted as result of the abrasion and deterioration of automobile catalyst. Nowadays, about four million vehicles in Mexico City use catalytic converters, which means that their impact should be considered. In order to evaluate the contribution of Pt to environmental pollution of the metropolitan area of Mexico City (MAMC), airborne PM2.5 was collected at five different sites in the urban area (NW, NE, C, SW, SE) in 2011 during April (dry-warm season), August (rainy season) and December (dry-cold season). Analytical determinations were carried out using a ICP-MS with a collision cell and kinetic energy discrimination. The analytical and instrument performance was evaluated with standard road dust reference material (BCR-723). Median Pt concentration in the analyzed particulate was is 38.4 pg m−3 (minimal value 1 pg m−3 maximal value 79 pg m−3). Obtained Pt concentrations are higher than those reported for other urban areas. Spatial variation shows that SW had Pt concentration significantly higher than NW and C only. Seasonal variation shows that Pt median was higher in rainy season than in both dry seasons. A comparison of these results with previously reported data of PM10 from 1991 and 2003 in the same studied area shows a worrying increase in the concentration of Pt in the air environment of MAMC.