SEGH Events

Supporting Conferences, meetings and events

13 December 2015
A guide to groups interested in hosting an SEGH event.
Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of residual organochlorine pesticides in soils under different land-use types on a coastal plain of the Yellow River Delta 2015-07-04

    Abstract

    The residual levels of organochlorine pesticides (OCPs) were examined in soils covering five types of land use along a salinity gradient on the Yellow River Delta. The most prominent OCPs were dichlorodiphenyltrichloroethane (∑DDT, arithmetic mean = 5.11 μg kg−1), hexachlorocyclohexane (∑HCH, 1.69 μg kg−1) and ∑endosulfan (10.4 μg kg−1). The spatial variability of OCPs composition shifted from γ-HCH and o,p′-DDT dominated pesticides in coastal soils to p,p′-DDE dominated pesticides in inland soils. In different land-use types, the percentages of β-HCH and p,p′-DDE are characterized by more recalcitrant components in decreasing order of vegetable fields, cereal fields, cotton fields, wetlands and tidal flats with increasing soil salinity. However, the less recalcitrant components, γ-HCH and o,p′-DDT, showed an opposite trend. Endosulfan sulfate predominated in all land-use types. Residual levels of β-HCH were affected by soil organic matter. The correlations between γ-HCH and clay content and between p,p′-DDE, o,p′-DDT and salinity might associate with the influence of sediment cotransport by the Yellow River and the density of anthropogenic activities in coastal region. Depth distribution of the OCPs in typical soil profiles also implied that local historical usage and sediment transport by the Yellow River both affected the OCPs residual in this region.

  • Can abundance of methanogen be a good indicator for CH 4 flux in soil ecosystems? 2015-06-30

    Abstract

    Methane, which is produced by methanogenic archaea, is the second most abundant carbon compound in the atmosphere. Due to its strong radiative forcing, many studies have been conducted to determine its sources, budget, and dynamics. However, a mechanistic model of methane flux has not been developed thus far. In this study, we attempt to examine the relevance of the abundance of methanogen as a biological indicator of methane flux in three different types of soil ecosystems: permafrost, rice paddy, and mountainous wetland. We measured the annual average methane flux and abundance of methanogen in the soil ecosystems in situ. The correlation between methane flux and the abundance of methanogen exists only under a specific biogeochemical conditions such as SOM of higher than 60 %, pH of 5.6–6.4, and water-saturated. Except for these conditions, significant correlations were absent. Therefore, microbial abundance information can be applied to a methane flux model selectively depending on the biogeochemical properties of the soil ecosystem.

  • Evaluation of microelement contents in Clethra barbinervis as food for human and animals in contrasting geological areas 2015-06-29

    Abstract

    The young leaves of Clethra barbinervis Sieb. et Zucc, which is a deciduous tree species found in secondary forests widely in Japan, are used in spring as a local traditional food by local populations, and the bark of this plant is also preferred by sika deer, Cervus nippon. However, C. barbinervis has been known to accumulate heavy metals in its leaves. Then, we aimed to clarify the characteristics of microelement contents in C. barbinervis and to discuss the value of this species as food for humans and animals through the analysis of seasonal changes and distribution in various organs of C. barbinervis growing under two different geological conditions. We found that C. barbinervis is an accumulating and tolerant plant for Ni, Co and Mn. It accumulates Ni from serpentine soil containing Ni at high concentration, and Co and Mn from acidic soils based on crystalline schist. The seasonal variation in element concentrations in leaves indicates that the young leaves contain Cu at high concentration and that eating them in spring season may be advantageous to humans, due to the associated increase in Cu intake. The high concentrations of Cu and Zn in the bark of C. barbinervis might explain why deer prefer to eat the bark of this species.