Content Submission

Diverse scientific fields and multidisciplinary expertise brought together within an international community

Content Submission

This website provides a platform for SEGH members to communicate their latest research and discussion topics with the rest of the SEGH community.  Authors of articles could highlight their latest research in peer reviewed publications, conferences and events, it provides an opportunity for research students to write about their latest work and a platform for general discussions within the SEGH community. 

Some notes: articles should be targeted at a general scientific audience owing to the multidisciplinary nature of SEGH, no more than 500 words in length, include JPEG photographs.  Feel free to include links to research groups or peer reviewed papers.  

Content Submission
Name

Email Address
Tel
Company
Position
Country of Residence
Article Title

Upload your content: (Max 2 MB)
Keep up to date

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Correction to: Potential CO 2 intrusion in near-surface environments: a review of current research approaches to geochemical processes 2019-05-22

    In the original publication of the article, the third author name has been misspelt. The correct name is given in this correction. The original version of this article was revised.

  • The legacy of industrial pollution in estuarine sediments: spatial and temporal variability implications for ecosystem stress 2019-05-22

    Abstract

    The direct impacts of anthropogenic pollution are widely known public and environmental health concerns, and details on the indirect impact of these are starting to emerge, for example affecting the environmental microbiome. Anthropogenic activities throughout history with associated pollution burdens are notable contributors. Focusing on the historically heavily industrialised River Clyde, Scotland, we investigate spatial and temporal contributions to stressful/hostile environments using a geochemical framework, e.g. pH, EC, total organic carbon and potentially toxic elements: As, Co, Cr, Cu, Ni, Pb and Zn and enrichment indicators. With regular breaches of the sediment quality standards in the estuarine system we focused on PTE correlations instead. Multivariate statistical analysis (principle component analysis) identifies two dominant components, PC1: As, Cr, Cu, Pb and Zn, as well as PC2: Ni, Co and total organic carbon. Our assessment confirms hot spots in the Clyde Estuary indicative of localised inputs. In addition, there are sites with high variability indicative of excessive mixing. We demonstrate that industrialised areas are dynamic environmental sites dependant on historical anthropogenic activity with short-scale variation. This work supports the development of ‘contamination’ mapping to enable an assessment of the impact of historical anthropogenic pollution, identifying specific ‘stressors’ that can impact the microbiome, neglecting in estuarine recovery dynamics and potentially supporting the emergence of antimicrobial resistance in the environment.

  • Application of a soil quality assessment system using ecotoxicological indicators to evaluate contaminated and remediated soils 2019-05-21

    Abstract

    The deterioration of soil quality owing to human activities results in adverse effects on the soil ecosystem. This study developed a systematic method to quantitatively evaluate soil quality based on physical, chemical, biological, and ecotoxicological indicators and proposed the soil quality assessment and management system. This system consists of step-by-step processes, including indicator classification, indicator measurement, scoring and weighting, and soil quality index (SQI) calculation. The novel strategy included the usage of authentic ecotoxicological indicators for realistically interpreting soil quality assessment results. This study used five ecotoxicological indicators, including earthworm survival, enzyme activities, nematode reproduction, plant germination and growth, soil algal biomass, and soil algal photosynthetic capacity. Relatively higher SQI values than those corresponding to the actual soil quality status would be obtained without considering the ecotoxicological indicators. We conclude that the use of ecotoxicological indicator can help in soil quality assessment even under extreme soil quality conditions, such as highly contaminated or physically and chemically remediated soils.