SEGH Articles

Working together to combat environmental pollution and inform agricultural strategies

10 July 2015
Environmental scientists give an account of their experience from a Commonwealth Professional Fellowship in the UK.

My team at the British Geological Survey has hosted four Commonwealth Professional Fellowships from Pakistan, India, Malawi and Zimbabwe since 2012.  The scheme funded by the Commonwealth Scholarship Council UK (CSCUK) provides support for professionals in the Commonwealth to undertake training at a host institute in the UK.  Here a few of the Fellows give an account of their experience and opportunities arising from such a Fellowship in the UK.

Dr Mousumi Chatterjee – University of Calcutta / University of Reading

‘It was like my dream came true,” says Dr Mousumi Chatterjee, ‘when I opened the email informing of my success in attaining a Commonwealth Professional Fellowship. I was happy as I was going to experience everything that I had wanted to learn for the previous three years of postgraduate and post-doctorate training at the University of Calcutta.’  Mousumi, a biogeochemist working on mercury pollution in the Indian Sundarban wetland ecosystem, wanted to highlight the mercury exposure of different fish within an estuarine food chain, in order to measure direct human exposure levels. ‘My desire was fulfilled when I started my Professional Fellowship with BGS. Not only is the BGS well equipped with sophisticated analytical facilities, but the organisation also provided me with expert guidance and a friendly environment, and encouraged me in the new practical implementation of scientific ideas.’

During her Professional Fellowship in 2013, Mousumi used the BGS Inorganic Geochemistry laboratories to determine mercury contamination in a variety of edible fish, polychaete worms and bivalve molluscs.  ‘The results were fascinating, as the level of mercury contamination signified the feeding habits of different species of fish.’

Mousumi benefited from several scientific exchanges during her stay. ‘I visited the Marine Sciences Department at the University of Bangor, where I learnt how to extract the otolith (a small fish ear bone), which acts as a recorder of environmental chemistry, from hilsha fish. This resulted in a research collaboration with the Indian Institute of Science, Bangalore after my return to India. I also had the opportunity to attend and present my research findings at the International Conference of Mercury as a Global Pollutant 2013, held in Edinburgh, which brought together the world’s leading experts on mercury contamination of the environment.’

‘My Professional Fellowship was fruitful enough not only to implement independent research ideas in my home country of India, but also to build long-lasting research networks with the BGS. I am still in contact with Michael and now we are collaborating to work on global road dust pollution. I enjoyed every moment at the BGS, whether it was working in the laboratory or hanging out with colleagues in the canteen.’

Dr Munir Zia – Fauji Fertiliser Company (FFC), Pakistan

‘I had an opportunity to get hands-on experience for trace element analyses of soils, waters and grains to better understand soil-to-transfer of key minerals' says Munir Zia. 'Another area of professional development was to learn about the handling of large amount of analytical data and its GIS integration. After completion of a Fulbright Scientist Award, FFC assigned me as the R&D Coordinator however, being a scientist I was lacking in necessary management experience relevant to R&D. The professional training at BGS in 2012 enabled me to introduce collection of georeferenced soil samples across Pakistan. The FFC farmer education programme collects and analyses 25,000 soil samples every year, therefore, introduction of geo-referencing will enable us to transform this effort into national scale soil fertility maps. Generation of such maps will enable FFC to pinpoint areas that are deficient in trace minerals and other essential elements. Our effort in developing national scale maps will help strengthen crops bio-fortification programmes being run by HarvestPlus Pakistan, to which we are a local partner. We are also in a process to establish a Fertilizer Research Centre in Pakistan, the first of its kind in this country. The opportunity provided by CSCUK was invaluable in developing a network of partners and skills training. Since my first visit to BGS in 2012, I have returned several times through alternative funding opportunities to continue a joint programme of research and more recently with academics at the University of Nottingham through the joint Centre for Environmental Geochemistry’


Grace Manzeke – University of Zimbabwe

‘Smallholder rain-fed agriculture supports livelihoods for more than 60% of the Zimbabwean population' says Grace Manzeke. 'Like any system, it faces various challenges which include poor soils, low crop yields and climate change and variability among others. Working in these communities for over 10 years now, the Soil Fertility Consortium for Southern Africa (SOFECSA) at the University of Zimbabwe has been promoting impact-oriented research for development through a multi-institutional disciplinary approach. This has opened an avenue of research which could be explored in these farming communities, some of which require external regional and international support such as relevant skills and knowledge to address the inherent and emerging challenges.’

‘As a Research Fellow for SOFECSA, I undertook a Commonwealth Professional Fellowship award in Spring of 2015 with the Inorganic Geochemistry team at BGS and the University of Nottingham (UoN), through the joint Centre for Environmental Geochemistry (CEG). I gained relevant skills and knowledge on modern sampling design and implementation, database management, GIS, geostatistics and laboratory quality assurance techniques. The BGS is a centre for technology excellence with laboratories equipped with modern instruments and dedicated technologically sound staff, statisticians and geochemists relevant to support emerging research on alleviating extreme poverty and malnutrition in Zimbabwe smallholder communities and the region. This support is fundamental for my new Royal Society-DFID (http://britgeopeople.blogspot.co.uk/2015/01/geochemistry-in-sub-saharan-africa-by.html) – PhD project on geospatial characterisation of micronutrient deficiency in Zimbabwean soils. Results generated during the CSCUK training showed that our soils are very acidic with low total Zn concentrations of 29.1 mg kg-1 implying the need for agricultural interventions to enhance crop productivity.  I would recommend the future for soil science research in Zimbabwe to be inclined towards use of stable isotopes e.g. 70Zn for detecting available soil nutrients to promote soil-to-plant transfer to combat regional “hidden hunger” estimated at 40%. This is a novel approach which is currently implemented at the UoN and would recommend for sustainable agricultural interventions in Zimbabwe and Sub-Saharan Africa. The CSCUK project enabled me to develop sustainable collaborative links with BGS and UoN, and with another CSCUK Fellow, Salome Mkandwire, a database expert hosted by the Inorganic Geochemistry team (http://britgeopeople.blogspot.co.uk/2015/05/managing-malawis-spatial-data-by-carl.html) from the Malawi Department of Surveys.’

For all of the Commonwealth Fellows, it was important to expose them to the variety of opportunities in the UK, from work through to visiting the variety of tourist and scenic locations. They were initially helped in doing so, but soon unleashed the enthusiasm for exploring the UK and grew to enjoy the environment and culture. From a host perspective, there are the obvious opportunities to develop collaborative networks and partners, but also an opportunity for other members of a team or junior scientists to broaden their horizons through training or working alongside Fellows from overseas.

By Dr Michael Watts, Head of Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey.

Papers from the Fellows.

Chatterjee M, Sklenars L, Chenery SR, Watts MJ, Rakshit D and Sarkar SK. (2014). Assessment of Total Mercury (HgT) in sediments and biota of Indian Sundarban Wetland and adjacent coastal regions, Environment and Natural Research, 4(2): 50-64

Zia M, Watts MJ, Gardner A, Chenery SR. (2015). Iodine status of soils, grain crops and irrigation waters in Pakistan, Environmental Earth Sciences, 73, 7995-8008.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18

    Abstract

    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.

  • Soil–plant system and potential human health risk of Chinese cabbage and oregano growing in soils from Mn- and Fe-abandoned mines: microcosm assay 2020-01-17

    Abstract

    In Portugal, many abandoned mines are often close to agricultural areas and might be used for plant food cultivation. Soils in the vicinity of two Mn- and Fe-abandoned mines (Ferragudo and Rosalgar, SW of Portugal) were collected to cultivate two different food species (Brassica rapa subsp. pekinensis (Lour.) Hanelt and Origanum vulgare L.). Chemical characterization of the soil–plant system and potential risk of adverse effects for human health posed by plants associated with soil contamination, based on the estimation of hazard quotient (HQ), were assessed in a microcosm assay under greenhouse conditions. In both soils, the average total concentrations of Fe and Mn were above the normal values for soils in the region and their concentration in shoots of both species was very high. Brassica rapa subsp. pekinensis grew better in Ferragudo than in Rosalgar soils, and it behaved as an excluder of Cu, Mn, Fe, S and Zn in both soils. The HQ for Cu, Fe, Mn and Zn in the studied species grown on both soils was lower than unit indicating that its consumption is safe. The high Mn tolerance found in both species might be due in part to the high contents of Fe in the soil available fraction that might contribute to an antagonism effect in the uptake and translocation of Mn. The obtained results emphasize the need of further studies with different food crops before cultivation in the studied soils to assess health risks associated with high metal intake.

  • Concentration, fractionation, and ecological risk assessment of heavy metals and phosphorus in surface sediments from lakes in N. Greece 2020-01-13

    Abstract

    The presence of phosphorus (P) and heavy metals (HMs) in surface sediments originating from lakes Volvi, Kerkini, and Doirani (N. Greece), as well as their fractionation patterns, were investigated. No statistically significant differences in total P content were observed among the studied lakes, but notable differences were observed among sampling periods. HM contents in all lakes presented a consistent trend, i.e., Mn > Cr > Zn > Pb > Ni > Cu > Cd, while the highest concentrations were recorded in Lake Kerkini. Most of the HMs exceeded probable effect level value indicating a probable biological effect, while Ni in many cases even exceeded threshold effects level, suggesting severe toxic effects. P was dominantly bound to metal oxides, while a significant shift toward the labile fractions was observed during the spring period. The sum of potentially bioavailable HM fractions followed a downward trend of Mn > Cr > Pb > Zn > Cu > Ni > Cd for most lakes. The geoaccumulation index Igeo values of Cr, Cu, Mn, Ni, and Zn in all lakes characterized the sediments as “unpolluted,” while many sediments in lakes Volvi and Kerkini were characterized as “moderately to heavily polluted” with regard to Cd. The descending order of potential ecological risk \(E_{\text{r}}^{i}\) was Cd > Pb > Cu > Ni > Cr > Zn > Mn for all the studied lakes. Ni and Cr presented the highest toxic risk index values in all lake sediments. Finally, the role of mineralogical divergences among lake sediments on the contamination degree was signified.