SEGH Articles

SEGH Member participated in the Antarctic Circumpolar Expedition

02 July 2017
Francois De Vleeschouwer, researcher at EcoLab, (CNRS, Toulouse France) and SEGH secretary, had the opportunity to embark onboard the RV Akademik Treshnikov to participate in the ACE Expedition


François De Vleeschouwer, researcher at EcoLab, (CNRS, Toulouse France) and SEGH secretary, had the opportunity to embark onboard the RV Akademik Treshnikov to participate in the ACE Expedition. From December 2016 to March 2017, scientific teams from all over the world joined into an unprecedented expedition around Antarctica. From biology to climatology to oceanography, researchers from 22 selected projects worked on a number of interrelated fields revolving around Antarctica.

 

François De Vleeschouwer is involved in a British Antarctic Survey-supervised project dealing with « Measuring the changes in the ocean’s capacity to absorb CO2 ». Concentrations of CO2 in the atmosphere have increased since 1750 AD as a result of human activity. This is linked to warming of the atmosphere and oceans, changes in climate, recession of ice sheets and sea level rise. More than one quarter of this CO2 is absorbed by the oceans; the Southern Ocean accounting for 43%. The capacity of the Southern Ocean to absorb CO2 has recently been limited (according to some models) by an increase in the strength of the Southern Hemisphere Westerly Winds (SHW), which draw CO2 saturated waters back to the surface. This will potentially drive up atmospheric greenhouse gases and accelerate rates of global warming.Reconstructing past changes in the SHW and their impact on the oceanic CO2 sink is therefore a major priority for palaeoclimate science.

 

François De Vleeschouwer participated to the leg 2 of the ACE navigation from Hobart, Tasmania to Punta Arenas, Chile. After an unfortunate storm that obliged the expedition to cancel the sampling at Macquarie Island, the boat navigated throuhgh Antarctic waters to then cross the Drake’s Passage. F. De Vleeschouwer sampled soils, mosses and peatlands on various islands from the Antarctic (Scott, Maher, Lauft, Siple) and sub-Antarctic (Diego Ramirez Archipelago).

 

The main objective of this project is to determine the Holocene (last 12000 yrs) changes in the strength of the SHW over the Southern Ocean by generating records of wind-driven aerosols and other proxies in sediment records from lakes and bogs on the west coasts of sub-Antarctic islands and, These data will be further used in global climate models to test if past changes in the SHW explain past variations in atmospheric CO2.

Further information can be found on : http://spi-ace-expedition.ch/

 

Francois de Vleeschouwer, CNRS, Toulouse, France

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil 2017-11-07

    Abstract

    The goal of the study was to evaluate the application of biochar (BC) to the sewage sludge (SL) on the adsorption and desorption capacity of Cd(II), Cu(II), Ni(II) and Zn(II). The effect of biochar contribution in the sewage sludge (2.5, 5 and 10%) was investigated. The isotherms data were fitted to the Langmiur (LM), Freundlich (FM) and Temkin (TM) models. The best fitting for kinetic study was obtained for the pseudo-second-order equation. The best fitting of the experimental data was observed for the LM in the case of SL and BC, and for the FM in the case of SL- and SL/BC-amended soil. SL was characterized by even four-order higher sorption capacity than BC. The addition of the BC to the SL and next to the soil increased the adsorption capacity of the soil and the SL-amended soil. In the case of all investigated potentially toxic elements (PTEs), the highest adsorption capacity was achieved for SL-amended soil in comparison with the control soil. In the case of other experimental variants, the adsorption capacity of metal ions was as follows: 2.5% BC > 5.0% BC > 10% BC. The negative correlation between hydrated radius of metal ions and the kinetics of sorption was observed. However, the desorption of PTEs from BC/SL-amended soil was significantly lower than for SL-amended soil (except of Cd) and non-amended soil. It can be concluded that the addition of the biochar enhanced the immobilization of PTEs and reduced their bioavailability and mobility in the soil amended by the sewage sludge.

  • Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran 2017-10-28

    Abstract

    This study investigates the occurrence and spatial distribution of potentially toxic elements (PTEs) (Hg, Cd, Cu, Mo, Pb, Zn, Ni, Co, Cr, Al, Fe, Mn, V and Sb) in 67 road dust samples collected from urban industrial areas in Ahvaz megacity, southwest of Iran. Geochemical methods, multivariate statistics, geostatistics and health risk assessment model were adopted to study the spatial pollution pattern and to identify the priority pollutants, regions of concern and sources of the studied PTEs. Also, receptor positive matrix factorization model was employed to assess pollution sources. Compared to the local background, the median enrichment factor values revealed the following order: Sb > Pb > Hg > Zn > Cu > V > Fe > Mo > Cd > Mn > Cr ≈ Co ≈ Al ≈ Ni. Statistical results show that a significant difference exists between concentrations of Mo, Cu, Pb, Zn, Fe, Sb, V and Hg in different regions (univariate analysis, Kruskal–Wallis test p < 0.05), indicating the existence of highly contaminated spots. Integrated source identification coupled with positive matrix factorization model revealed that traffic-related emissions (43.5%) and steel industries (26.4%) were first two sources of PTEs in road dust, followed by natural sources (22.6%) and pipe and oil processing companies (7.5%). The arithmetic mean of pollution load index (PLI) values for high traffic sector (1.92) is greater than industrial (1.80) and residential areas (1.25). Also, the results show that ecological risk values for Hg and Pb in 41.8 and 9% of total dust samples are higher than 80, indicating their considerable or higher potential ecological risk. The health risk assessment model showed that ingestion of dust particles contributed more than 83% of the overall non-carcinogenic risk. For both residential and industrial scenarios, Hg and Pb had the highest risk values, whereas Mo has the lowest value.

  • Hydrogeochemical processes identification and groundwater pollution causes analysis in the northern Ordos Cretaceous Basin, China 2017-10-23

    Abstract

    It is necessary to identify the hydrogeochemical processes and analyze the causes of groundwater pollution due to the lack of knowledge about the groundwater chemical characteristics and the endemic diseases caused by groundwater pollution in the northern Ordos Cretaceous Basin. In this paper, groundwater chemical facies were obtained using the piper trilinear diagram based on the analysis of 190 samples. The hydrogeochemical processes were identified using ionic ratio coefficient, such as leaching, evaporation and condensation. The causes and sources of groundwater pollution were analyzed by correspondence analysis, and the spatial distribution and enrichment reasons of fluoride ion were analyzed considering the endemic fluorosis emphatically. The results show that leaching, evaporation and condensation, mixing, and anthropogenic activities all had significant impact on hydrogeochemical processes in the study area. However, cation exchange and adsorption effects were strong in the S2 and S3 groundwater flow systems, but weak in S1. Groundwater is mainly polluted by Mn and CODMn in the study area. The landfill leachate, domestic sewage, and other organic pollutants, excessive use of pesticides and fertilizers in agriculture, and pyrite oxidation from long-term and large-scale exploitation of coal are the sources of groundwater pollution. The S1 has the highest degree of groundwater pollution, followed by S2 and S3. High concentration of fluoride ion is mainly distributed in the north and west of study area. Evaporation and condensation and groundwater chemistry component are the most important causes of fluoride ion enrichment. The results obtained in this study will be useful for understanding the groundwater quality for effective management and utilization of groundwater resources and assurance of drinking water safety.