SEGH Articles

SEGH2018 Prize Winners Series: Nswana Kafwamfwa

10 August 2018
Winner of a Best Poster Prize at SEGH2018: On-farm assessment of carbon stocks under sub-optimal and optimal input CA management in Mpongwe and Chisamba districts of Zambia - this installment of the Prize Winners Series is contributed by Nswana Kafwamfwa.

Kafwamfwa N., 2Chabala L. and 2Shepande C.

1.Zambia Agriculture Research Institute, Soils and Water Management Section., 2.The University of Zambia, School of Agricultural Sciences

Corresponding author: knswana@yahoo.com, chitalu81.nk@gmail.com

Conservation Agriculture (CA) is one of the promising practices being promoted for reducing the greenhouse gas effect in the face of climate change. This study sought to assess the amount of soil organic carbon (SOC) in CA and Conventional Tillage (CT) cropping systems under suboptimal and optimal input management in Mpongwe and Chisamba (GART) districts of Zambia. In the context of this study, optimal input management refers to agricultural production management were maximum available inputs are applied to the field while, suboptimal input management refers to management were the farmers use a blanket recommendation of inputs per hectare, e.g blanket fertilizer recommendation of four top and four basal fertilizers per hectare at small scale farmer level in Zambia. Composite soil samples were randomly collected at a depth of 20 cm to assess the C-stock in fields which have been under CA/CT between 3 and 7 years under suboptimal input management and between 12 and 18 years under optimal input management.

soil sampling zambia 2

 Kafwamfwa conducting soil sampling for the research project

 

Changes on selected soil properties over time were determined using standard laboratory procedures. The amount of soil carbon sequestered was assessed using the adjusted Land Use, Land-Use Change and Forestry (LULUCF) model. The results indicate that Conservation Agriculture (CA) fields had sequestered 1,424 kg SOC /ha,year while the Conventional Tillage (CT) fields had 392 kg SOC/ha,year, representing a threefold difference. At Golden valley Agriculture Research Trust (GART), SOC was 63,180 kg/ha after 15 years of CA compared to 50,622 kg/ha under CT over the same period. These findings suggest that CA can mitigate the effects of climate change by reducing the carbon emission resulting from the crop production practices. Further, there were significant differences between C-stocks under the 18 and 12 years CA fields under faidherbia albida (Musangu) trees at GART. The results also showed increased pH values under the eucalyptus field compared to the other fields at GART suggesting that pH increases when land use is changed from agriculture to forestry.

Kafwamfwa at the 34th International Conference of SEGH in Livingstone, Zambia



Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Retraction Note: Field evaluation of intensive compost application on Cd fractionation and phytoavailability in a mining-contaminated soil 2019-06-18

    The Editor-in-Chief has retracted this article (Li et al. 2016). An investigation by the Journal has not been able to confirm the identity and affiliation of the author David Raleve. This author was the corresponding author on submission but changed the corresponding authorship at the proof stage. The current corresponding author was not aware of the publication of this article. As the appropriate authorship for this article cannot be determined, the Editor-in-Chief no longer has confidence in this article. Ibrahim Mohamed disagrees with this retraction. Ming Li and Wenli Chen did not respond to any correspondence about this retraction. Qiaoyun Huang did not respond to any correspondence about this retraction notice.

  • Perlite as the partial substitute for organic bulking agent during sewage sludge composting 2019-06-18

    Abstract

    Composting is an efficient and cost-effective technology for sewage sludge treatment, and bulking agents are essential in sewage sludge composting. In this study, perlite was chosen as inorganic bulking agent to partially substitute for the organic bulking agent. Variations in the temperature, bulk density, moisture content, pH, electrical conductivity, organic carbon, nitrogen, phosphorus and potassium were detected during sewage sludge composting. The treatment with a mass ratio of spent mushroom substrate to perlite at 3:1 exhibited the highest pile temperature and the best effect on reducing bulk density and moisture content. In addition, Fourier transform infrared spectra showed that perlite promotes the degradation of organic matter during the composting process, and the germination index showed that the compost from all treatments was safe for agricultural application. When the mass ratios of spent mushroom substrate and perlite at 3:1 and 2:2 were chosen as bulking agents, the sewage sludge compost product could be used to produce plant cultivation substrate, and economic benefits could be obtained from sewage sludge composting according to comprehensive cost analysis.

  • A scoping study of component-specific toxicity of mercury in urban road dusts from three international locations 2019-06-18

    Abstract

    This scoping study presents an investigation of the total and bioaccessible mercury concentrations in road dust (RD) from three international urban sites, where a one-off sampling campaign was conducted at each. This was done to address the hypothesis that the matrix in which mercury is found influences its ability to become accessible to the body once inhaled. For that purpose, the samples were analysed for total and pulmonary bioaccessible mercury and the data compared to the chemical structure of individual particles by SEM. The results obtained from this study suggest that a high mercury content does not necessarily equate to high bioaccessibility, a phenomenon which could be ascribed to the chemical character of the individual particles. It was found that the Manchester samples contained more pulmonary soluble mercury species (as determined by elemental associations of Hg and Cl) in comparison to the other two samples, Curitiba, Brazil, and Johannesburg, South Africa. This finding ultimately underlines the necessity to conduct a site-specific in-depth analysis of RD, to determine the concentration, chemical structure and molecular speciation of the materials within the complex matrix of RD. Therefore, rather than simply assuming that higher bulk concentrations equate to more significant potential human health concerns, the leaching potential of the metal/element in its specific form (for example as a mineral) should be ascertained. The importance of individual particle behaviour in the determination of human health risk is therefore highlighted.