SEGH Articles

Book review: Health protection, Principles and practice

02 July 2017
Τhe interface between the environment and health is a fascinating research topic and has traditionally been the central focus of SEGH. In fact it is this field that brings together geoscientists and medical and public health researchers and practitioners to address health problems caused or exacerbated by environmental hazards and natural disasters.

Edited by Ghebrehewet S, Stewart AG, Baxter D, Shears P, Conrad D, Kliner M. Oxford University Press (2016). 480 pp.

Τhe interface between the environment and health is a fascinating research topic and has traditionally been the central focus of SEGH. In fact it is this field that brings together geoscientists and medical and public health researchers and practitioners to address health problems caused or exacerbated by environmental hazards and natural disasters. However, searching for the right tools for communication between earth scientists and public health professionals can be a difficult task. "Health Protection: Principles and practice" is an excellent resource serving this scope among others. The book is written by specialists in the field of Health Protection in the UK where a multidisciplinary approach is adopted involving local health protection teams acting on both infectious diseases and environmental hazards. As such, although about one half of its chapters concerns infectious diseases, the book takes an inclusive, all-hazards approach and covers extensively environmental hazard control and emergency response to natural disasters, i.e. topics in the realm of common interest and interaction between geoscientists and health professionals.

As a non-specialist in health issues, without a medical background, I found the information presented in the first Section of the book very useful in providing the necessary knowledge basis to follow the case studies and scenarios related to health protection situations presented in the following chapters. The interest for geoscientists builds up from Section 3, where fire and flooding emergency situations are examined, and Section 4 which covers air pollution, cancer and chronic disease - all being typical issues where integration of health studies and environmental investigations is necessary. Section 5 focuses on health protection tools and builds upon well established approaches of environmental geochemistry, e.g. the source-pathway- receptor concept. The parallel presentation of key steps in the investigation and management of incidents arising from communicable disease, emergency response and environmental situations enables the reader to familiarise with the overall approach to public health risk assessment in all three domains. I also found that presentation through real-life scenarios, bullet points and "further thinking" boxes enhance comprehension and contribute to an easy to follow and enjoyable reading experience, which is also supported by up-to-date references.

The final Section of the book gazes into the future and discusses health protection under conditions of environmental, population and technological changes that are being observed and predicted. This section provides plenty food for thought and leads the way for developing new research ideas. The last chapter examines the relationship between health protection and sustainability, a societal challenge addressed through its three pillars of environment, economic development and social equity. The highlight of the book is certainly the comprehensive and succinct health protection checklists presented under the inventive acronym "SIMCARDs". These one-page summaries form the Appendix section and provide practical, quick reference guides for in-practice use as well as an excellent concise knowledge resource for the non-expert on how to identify and manage situations. Nevertheless, as the acronym itself refers to the New Media Age, it might be a good idea to make them available on line through a computer based application, forming a digital companion of a second edition of the book.

In summary, as a geoscientist I would definitely recommend "Health protection, Principles and practice" to anyone working in the interface between the environment and health, whatever their affiliation, and whether academic or practitioner. Especially, coming from a country where interaction between health professionals and environmental geoscientists is still weak, this text has the potential for becoming a valuable guide in achieving a common code for communication and lead the way towards a more integrated approach to health protection.

by Ariadne Argyraki

Associate Professor of Geochemistry

National and Kapodistrian University of Athens, Greece


Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Lead sorption characteristics of various chicken bone part-derived chars 2018-01-18


    Recycling food waste for beneficial use is becoming increasingly important in resource-limited economy. In this study, waste chicken bones of different parts from restaurant industry were pyrolyzed at 600 °C and evaluated for char physicochemical properties and Pb sorption characteristics. Lead adsorption isotherms by different chicken bone chars were carried out with initial Pb concentration range of 1–1000 mg L−1 at pH 5. The Pb adsorption data were better described by the Langmuir model (R2 = 0.9289–0.9937; ARE = 22.7–29.3%) than the Freundlich model (R2 = 0.8684–0.9544; ARE = 35.4–72.0%). Among the chars derived from different chicken bone parts, the tibia bone char exhibited the highest maximum Pb adsorption capacity of 263 mg g−1 followed by the pelvis (222 mg g−1), ribs (208 mg g−1), clavicle (179 mg g−1), vertebrae (159 mg g−1), and humerus (135 mg g−1). The Pb adsorption capacities were significantly and positively correlated with the surface area, phosphate release amount, and total phosphorus content of chicken bone chars (r ≥ 0.9711). On the other hand, approximately 75–88% of the adsorbed Pb on the chicken bone chars was desorbable with 0.1 M HCl, indicating their recyclability for reuse. Results demonstrated that chicken bone char could be used as an effective adsorbent for Pb removal in wastewater.

  • Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in a large shallow lake in north China 2018-01-13


    Eighteen selected pharmaceuticals and personal care products (PPCPs), consisting of five non-antibiotic pharmaceuticals (N-APs), four sulfonamides (SAs), four tetracyclines (TCs), four macrolides (MCs), and one quinolone (QN) were detected in water, pore water, and sediment samples from Baiyangdian Lake, China. A total of 31 water samples and 29 sediment samples were collected in March 2017. Caffeine was detected with 100% frequency in surface water, pore water, and sediment samples. Carbamazepine was detected with 100% frequency in surface water and sediment samples. Five N-APs were prominent, with mean concentrations of 4.90–266.24 ng/l in surface water and 5.07–14.73 μg/kg in sediment samples. Four MCs were prominent, with mean concentrations of 0.97–29.92 ng/l in pore water samples. The total concentrations of the different classes of PPCPs followed the order: N-APs (53.26%) > MCs (25.39) > SAs (10.06%) > TCs (7.64%) > QNs (3.64%) in surface water; N-APs (42.70%) > MCs (25.43%) > TCs (14.69%) > SAs (13.90%) > QNs (3.24%) in sediment samples, and MCs (42.12%) > N-APs (34.80%) > SAs (11.71%) > TCs (7.48%) > QNs (3.88%) in pore water samples. The geographical differences of PPCP concentrations were largely due to anthropogenic activities. Sewage discharged from Baoding City and human activities around Baiyangdian Lake were the main sources of PPCPs in the lake. An environmental risk assessment for the upper quartile concentration was undertaken using calculated risk quotients and indicated a low or medium-high risk from 18 PPCPs in Baiyangdian Lake and its five upstream rivers.

  • Association of soil potassium and sodium concentrations with spatial disparities of prevalence and mortality rates of hypertensive diseases in the USA 2018-01-12


    Crop available soil potassium is generally low and on the decline in the southeastern states of the USA because of the increasing crop and runoff removal and decreasing application of potassium fertilizer. Hypertension-related mortality rates are also high in the southeastern states and are on the rise. Among 41 elements analyzed from 4856 sites across all 48 states, potassium is identified as the only independent element whose soil concentration has significant association with spatial disparities of essential hypertension and hypertension-related mortality rates in the 48 states between 1999 and 2014. Essential hypertension and hypertension-related mortality rates of the 6 states with the lowest soil potassium concentration are about 50–26% higher than that of the 6 states with the highest soil potassium concentration in the 48 states (RR: 1.50, 1.26, low CI 95% 1.47, 1.25 and upper CI 95% 1.53, 1.27, respectively). Though sodium was not identified as an independent factor, an apparent significant inverse correlation exists between hypertension prevalence rates and soil sodium concentration in the 48 states (r = − 0.66, p = 0.00). There likely has been a decline of potassium in USA produces per unit weight over time and a likely association between this decline and increasing hypertension rate, particularly in the southeastern states. Hence, results of this study suggest the need of increasing potassium intakes for reducing hypertension-related mortality rates in the southeastern states. Results of this study also support further examination of potential benefits of sodium from mixture of non-chloride salts in natural produces.