SEGH Articles

The Future is Africa

05 February 2014
In early January Dr Michael Watts visited Zimbabwe and Zambia with a colleague from the University of Nottingham. They were funded from a Royal Society-DFID grant to foster science networks in Africa and to help strengthen scientific capacity. Here Michael tells us about his trip

 

 On a recent visit to Zimbabwe and Zambia with my colleague Prof Martin Broadley from the University of Nottingham, we faced the usual clichés of poverty, rickety infrastructure and reported political problems (in Africa that is!). On the ground, we experienced well organised accommodation, welcoming people, good internet links, extensive construction projects and in particular we met some innovative colleagues working in academia. Academics in that part of the world press on with applied research, despite limitations in funds and access to the latest technology. In particular they use tried and tested approaches to laboratory analyses, field trials and application of empirical knowledge to help answer some real soil and agricultural problems, especially using regional networks.  In the UK, we could be mistaken for thinking all of Africa is dependent on aid. Much of it is, but in Zambia and Zimbabwe, there are huge opportunities in commodities and agriculture, as well as multimedia services driven by rapid progress in IT, internet and mobile phones. 

There are numerous opportunities for UK science to collaborate on an equal basis with African scientists. For example, our previous efforts in Malawi in proposing the biofortification of staple crops with essential micronutrients to target key health issues at a population level, is becoming accepted in the region. Many studies within academia and research institutes are underway to explore best practice for agricultural techniques to improve the fertility and micronutrient content of soil for food production / quality, within the confines of available resources, such as limited lab capability. The reason for our recent visit resulted from a network grant from the Royal Society-DFID call for strengthening science capacity in Africa. For our part, improving soil science capacity to build on excellent regional academic capability through access to current technologies in lab analyses, data representation and geostatistics. This can be facilitated via north-south and south-south research links with consortia partners in Malawi, Zambia and Zimbabwe.

Alongside the agricultural initiatives, there are opportunities for SEGH scientists to collaborate with local scientists on contaminant exposure associated with immense mining activities. Current studies in Zambia employ exposure techniques (microbial activity, human biomarker analyses) to inform safe working practices and better environmental strategies for resource exploitation, particularly in the copper belt region. Whilst the RS-DFID call will fund African PhD students in African institutions, there are opportunities for UK students to learn environmental science in tropical environments and to develop their wider understanding. Two-way exchange of students and research staff will build the future collaborative partnerships to the benefit of SEGH and African science capacity.

Dr Michael Watts  http://www.bgs.ac.uk/staff/profiles/4583.html

BGS-University of Nottingham Centre for Environmental Geochemistry

 

Acknowledgements:

Royal Society for the network grant funding and the BGS Global initiative.

Related reports:

http://www.segh.net/articles/Notes_from_Malawi/

Joy E et al. (2014). Dietary Mineral Supplies in Africa, Plant Physiologia, in press DOI: 10.1111/ppl.12144. http://onlinelibrary.wiley.com/doi/10.1111/ppl.12144/abstract 

Hurst R, Siyame EWP, Young SD, Chilimba ADC, Joy EJM, Black CR, Ander EL, Watts MJ, Chilima B, Gondwe J, Kang'ombe D, Stein AJ, Fairweather-Tait SJ, Gibson RS, Kalimbira A, Broadley MR (2013). Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi. Scientific Reports, 3, 1425. http://bit.ly/10Cd5P5.

Chilimba ADC, Young SD, Black CR, Rogerson KB, Ander EL, Watts M, Lammel J, Broadley MR (2011). Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Scientific Reports, 1, 72. http://bit.ly/ZjK3Th

Broadley MR, Chilimba ADC, Joy E, Young SD, Black CR, Ander EL, Watts MJ, Hurst R, Fairweather-Tait SJ, White PJ, Gibson RS (2012). Dietary requirements for magnesium but not calcium are likely to be met in Malawi based on national food supply data. International Journal for Vitamin and Nutrition Research, 82, 192-199. http://bit.ly/WGa2I6

Joy EJM, Young SD, Black CR, Ander EL, Watts, MJ, Broadley MR (2013). Risk of dietary magnesium deficiency is low in most African countries based on food supply data. Plant and Soil, doi:10.1007/s11104-012-1388-z. http://bit.ly/16pJPiD

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18

    Abstract

    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.

  • Soil–plant system and potential human health risk of Chinese cabbage and oregano growing in soils from Mn- and Fe-abandoned mines: microcosm assay 2020-01-17

    Abstract

    In Portugal, many abandoned mines are often close to agricultural areas and might be used for plant food cultivation. Soils in the vicinity of two Mn- and Fe-abandoned mines (Ferragudo and Rosalgar, SW of Portugal) were collected to cultivate two different food species (Brassica rapa subsp. pekinensis (Lour.) Hanelt and Origanum vulgare L.). Chemical characterization of the soil–plant system and potential risk of adverse effects for human health posed by plants associated with soil contamination, based on the estimation of hazard quotient (HQ), were assessed in a microcosm assay under greenhouse conditions. In both soils, the average total concentrations of Fe and Mn were above the normal values for soils in the region and their concentration in shoots of both species was very high. Brassica rapa subsp. pekinensis grew better in Ferragudo than in Rosalgar soils, and it behaved as an excluder of Cu, Mn, Fe, S and Zn in both soils. The HQ for Cu, Fe, Mn and Zn in the studied species grown on both soils was lower than unit indicating that its consumption is safe. The high Mn tolerance found in both species might be due in part to the high contents of Fe in the soil available fraction that might contribute to an antagonism effect in the uptake and translocation of Mn. The obtained results emphasize the need of further studies with different food crops before cultivation in the studied soils to assess health risks associated with high metal intake.

  • Concentration, fractionation, and ecological risk assessment of heavy metals and phosphorus in surface sediments from lakes in N. Greece 2020-01-13

    Abstract

    The presence of phosphorus (P) and heavy metals (HMs) in surface sediments originating from lakes Volvi, Kerkini, and Doirani (N. Greece), as well as their fractionation patterns, were investigated. No statistically significant differences in total P content were observed among the studied lakes, but notable differences were observed among sampling periods. HM contents in all lakes presented a consistent trend, i.e., Mn > Cr > Zn > Pb > Ni > Cu > Cd, while the highest concentrations were recorded in Lake Kerkini. Most of the HMs exceeded probable effect level value indicating a probable biological effect, while Ni in many cases even exceeded threshold effects level, suggesting severe toxic effects. P was dominantly bound to metal oxides, while a significant shift toward the labile fractions was observed during the spring period. The sum of potentially bioavailable HM fractions followed a downward trend of Mn > Cr > Pb > Zn > Cu > Ni > Cd for most lakes. The geoaccumulation index Igeo values of Cr, Cu, Mn, Ni, and Zn in all lakes characterized the sediments as “unpolluted,” while many sediments in lakes Volvi and Kerkini were characterized as “moderately to heavily polluted” with regard to Cd. The descending order of potential ecological risk \(E_{\text{r}}^{i}\) was Cd > Pb > Cu > Ni > Cr > Zn > Mn for all the studied lakes. Ni and Cr presented the highest toxic risk index values in all lake sediments. Finally, the role of mineralogical divergences among lake sediments on the contamination degree was signified.