SEGH Articles

Tellus Border: Initial findings of a geo-environmental survey of the border region of Ireland

01 March 2013
The Tellus Border project is an EU INTERREG IVA-funded mapping project that involved baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland.

The Tellus Border project is an EU INTERREG IVA-funded mapping project that involves baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland. The Geological Survey of Ireland (GSI), Queen’s University Belfast and Dundalk Institute of Technology are partners in the cross-border initiative, which is led by the Geological Survey of Northern Ireland.

After the successful completion of an airborne geophysical survey and a multi-element geochemical survey in summer 2012, the three-year project is now in a data interpretation and mapping phase.  As part of the geochemical survey, over 21,000 samples of soil, stream water, sediment and vegetation were collected over an area spanning 12,300 km2 at an average density of 1 site per 4 km2.  Stream sediment, water and topsoil samples have now been analysed for a range of inorganic elements. The data will be of assistance to the agricultural sector in the assessment of soil trace elements, to environmental managers in the assessment of potentially harmful elements in the environment and to the mineral exploration community. Geochemical data will be released free-of-charge via in the months ahead; regional geochemical and geophysical maps are currently available to view online.

Flying nearly 60,000 line kilometers, the airborne survey aircraft collected data from three on-board instruments (magnetometer, electromagnetic system and gamma ray detector) while flying at a low altitude of 60m above ground level. The data is already being used for the improvement of geological mapping, the assessment of radon hazard, detection of landfill pollution plumes and the identification of areas for deep geothermal potential. The airborne survey data has revealed extraordinary new detail to regional geological features which extend throughout the border region. New understanding of subsurface structures such as faults and igneous dykes is already helping to improve and update the Geological Survey of Ireland’s existing geological maps, which support sustainable planning countrywide.

A conference will be held in October 2013 to present the full findings from the survey and accompanying academic research projects. To register for notifications for upcoming data releases, please email your details to


Mairead Glennon, Kate Knights ( and Ray Scanlon, Geological Survey of Ireland, Dublin.

27th February 2013


Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of arsenic (As) occurrence in arable soil and its related health risk in China 2016-06-01


    Arsenic (As) is a major global environmental pollutant due to its high toxicity on human and animal health. This study collected 427 relevant papers to study As concentrations in Chinese arable soil and evaluate the health risk of exposure to As for humans. Results showed that the average of As concentration was 9.46 mg/kg in Chinese arable soil. Soil As concentrations in Hunan Province and Guangxi Zhuang Autonomous Region posed high carcinogenic and non-cancer risks on human health through diet, Yunnan, Guizhou, Guangdong, and Xinjiang provinces had relative high health risks, while As concentrations in the other provinces posed low health risks on humans. The physical factors controlled the spatial pattern of health risk on a provincial scale, but the As-related human activities introduced high health risk on people, particularly the agricultural activities such as sewage irrigation and fertilizer application should be given more attention due to its large area.

  • Mercury distribution in organs of fish species and the associated risk in traditional subsistence villagers of the Pantanal wetland 2016-06-01


    This study evaluated the risk to human health from mercury (Hg) exposure through fish consumption in the Pantanal, Brazil. In order to address these risks, Hg concentrations and accumulation patterns were determined in target organs of predatory fish (Crenicichla lepidota and Pygocentrus nattereri). Levels of Hg were analysed during the two phases of the flood pulse (flood and drought) in fish from different local ecosystems, such as the Bento Gomes and Paraguay rivers. Although the former study area is directly affected by gold mining, a higher, but not significantly different, Hg concentration in fish was found compared with fish at the Paraguay River, which is regarded as pristine area. Moreover, no seasonal variability was found in either river. Although total mercury levels in fish did not exceed the maximum FAO/WHO threshold (0.5 μg g−1), according to dietary habits in riverine communities of the Pantanal (up to 6 oz of fish per day), there is reason for concern over the potential for deleterious health effects that could be caused by high Hg intake. In fact, the estimated daily intake in the present study ranged from 0.49 to 1.08 μg Hg kg−1 day−1, for adults (including women of childbearing age) and children, respectively. Because of high Hg intakes in riverine groups, which exceed the recommended reference dose value, these communities could be considered at risk. Therefore, it is necessary to consider regulatory measures and public education regarding fish consumption, particularly in vulnerable groups (i.e. children, pregnant women and women of childbearing age).

  • Current status of arsenic exposure and social implication in the Mekong River basin of Cambodia 2016-06-01


    To evaluate the current status of arsenic exposure in the Mekong River basin of Cambodia, field interview along with urine sample collection was conducted in the arsenic-affected area of Kandal Province, Cambodia. Urine samples were analyzed for total arsenic concentrations by inductively coupled plasma mass spectrometry. As a result, arsenicosis patients (n = 127) had As in urine (UAs) ranging from 3.76 to 373 µg L−1 (mean = 78.7 ± 69.8 µg L−1; median = 60.2 µg L−1). Asymptomatic villagers (n = 108) had UAs ranging from 5.93 to 312 µg L−1 (mean = 73.0 ± 52.2 µg L−1; median = 60.5 µg L−1). About 24.7 % of all participants had UAs greater than 100 µg L−1 which indicated a recent arsenic exposure. A survey found that females and adults were more likely to be diagnosed with skin sign of arsenicosis than males and children, respectively. Education level, age, gender, groundwater drinking period, residence time in the village and amount of water drunk per day may influence the incidence of skin signs of arsenicosis. This study suggests that residents in Kandal study area are currently at risk of arsenic although some mitigation has been implemented. More commitment should be made to address this public health concern in rural Cambodia.