SEGH Articles

Tellus Border: Initial findings of a geo-environmental survey of the border region of Ireland

01 March 2013
The Tellus Border project is an EU INTERREG IVA-funded mapping project that involved baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland.

The Tellus Border project is an EU INTERREG IVA-funded mapping project that involves baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland. The Geological Survey of Ireland (GSI), Queen’s University Belfast and Dundalk Institute of Technology are partners in the cross-border initiative, which is led by the Geological Survey of Northern Ireland.

After the successful completion of an airborne geophysical survey and a multi-element geochemical survey in summer 2012, the three-year project is now in a data interpretation and mapping phase.  As part of the geochemical survey, over 21,000 samples of soil, stream water, sediment and vegetation were collected over an area spanning 12,300 km2 at an average density of 1 site per 4 km2.  Stream sediment, water and topsoil samples have now been analysed for a range of inorganic elements. The data will be of assistance to the agricultural sector in the assessment of soil trace elements, to environmental managers in the assessment of potentially harmful elements in the environment and to the mineral exploration community. Geochemical data will be released free-of-charge via www.tellusborder.eu in the months ahead; regional geochemical and geophysical maps are currently available to view online.

Flying nearly 60,000 line kilometers, the airborne survey aircraft collected data from three on-board instruments (magnetometer, electromagnetic system and gamma ray detector) while flying at a low altitude of 60m above ground level. The data is already being used for the improvement of geological mapping, the assessment of radon hazard, detection of landfill pollution plumes and the identification of areas for deep geothermal potential. The airborne survey data has revealed extraordinary new detail to regional geological features which extend throughout the border region. New understanding of subsurface structures such as faults and igneous dykes is already helping to improve and update the Geological Survey of Ireland’s existing geological maps, which support sustainable planning countrywide.

A conference will be held in October 2013 to present the full findings from the survey and accompanying academic research projects. To register for notifications for upcoming data releases, please email your details to tellusborder@gsi.ie.

 

Mairead Glennon, Kate Knights (kate.knights@gsi.ie) and Ray Scanlon, Geological Survey of Ireland, Dublin.

27th February 2013

 

Keep up to date

SEGH Events

SEGH 2015 31st International Conference

Bratislava

22 June 2015

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Endocrine-disrupting chemicals in the Pearl River Delta and coastal environment: sources, transfer, and implications 2014-12-01

    Abstract

    A study was conducted to investigate the occurrence and behavior of six endocrine-disrupting chemicals (EDCs) in sewage, river water, and seawater from the Pearl River Delta (PRD). The six EDCs under study were 4-nonylphenol (NP), bisphenol A (BPA), 17α-ethynylestradiol (EE2), estrone (E2), 17β-estradiol (E2), and estriol (E3). These EDCs, predominated by BPA, were found in high levels in the influents and the effluents of sewage treatment plants in the area. The relatively high concentrations (0.23–625 ng/L) of the EDCs detected in the receiving river water suggested that the untreated sewage discharge was a major contributor. The EDCs detected in eight outlets of the Pear River and the Pear River Estuary were in the ranges of 1.2–234 and 0.2–178 ng/L, respectively. The estrogen equivalents in the aquatic environments under study ranged from 0.08 to 4.5 ng/L, with E1 and EE2 being the two predominant contributors. As the fluxes of the EDCs from the PRD region to the nearby ocean are over 500 tons each year, the results of this study point to the potential that Pearl River is a significant source of the EDCs to the local environment there.

  • Occurrence of tar balls on the beaches of Fernando de Noronha Island, South Equatorial Atlantic 2014-12-01

    Abstract

    This work reports on the widespread occurrence of tar balls on a pebble beach of Sueste Bay on Fernando de Noronha Island, a Brazilian national marine park and a preserve in the South Equatorial Atlantic. Environmental regulations preclude regular visitors to the Sueste Bay beach, and the bay is a pristine area without any possible or potential sources of petroleum in the coastal zone. In this work, these tar balls were observed for the first time as they occurred as envelopes around beach pebbles. They are black in color, very hard, have a shell and coral fragment armor, and range in average size from 2 to 6 cm. The shape of the majority of the tar balls is spherical, but some can also be flattened ellipsoids. The polycyclic aromatic hydrocarbon analyses of the collected samples revealed the characteristics of a strongly weathered material, where only the most persistent compounds were detected: chrysene, benzo(b,k)fluoranthene, dibenzo(a,h)antracene and benzo(a)pyrene.

  • Evaluation of geochemical characteristics and health effects of some geophagic clays southern Nigeria 2014-12-01

    Abstract

    The geochemical characteristics of geophagic clays from Calabar and Okon-Eket, southern Nigeria were evaluated to determine their quality and the possible health effects of their consumption. The study involved the measurement of the pH, electrical conductivity (EC) and total dissolved solids (TDS) of the slurried clay samples soaked in distilled water for 48 h using digital multi-parameters probe as well as the elemental and mineralogical analyses of twenty geophagic clay samples for elemental and mineralogical constituents using both the ICP-MS and XRD, respectively. Medical data were also mined from medical facilities within the area in addition to the administering of questionnaire to adults involved in the geophagic practices in order to determine their justification for the practice as well as their and clay preferences. Results of physicochemical measurement revealed that the pH range of the samples ranges from 3.9 to 6.9 and 6.5 to 7.0; EC 0.3–377.7 and 0.12–82.38 µS/cm; TDS 1.98–2,432.65 and 0.08–52.95 mg/L for consumed and non-consumed clay, respectively. The elemental analyses revealed that the concentration of some potential harmful elements, PHEs, exceeded the recommended dietary intake by humans. This is especially true for Cu (9.1–23 ppm), Pb (16.7–55.6 ppm), Zn (13–148 ppm), Ni (11.1–46.4 ppm), Co (1.8–21.7 ppm), Mn (16–338 ppm), As (BDL-15 ppm) and Cd (BDL-0.2 ppm). The predominant phases established in the clay samples are quartz and kaolinite, while the minor minerals were montmorillonite and muscovite in all the clay samples. Respondents revealed that capacity for relief from gastrointestinal problems believes in the curative power to cure skin infections and cultural reasons as main justification for the geophagic practices. This is, however, not in conformity with information gleaned from the medical records which still indicated that the prevalent diseases in the area still include gastrointestinal problems in addition to malaria, hypertension and cardiac failure with minor cases of respiratory tract infections. The high concentrations of the PHEs may be responsible for or contribute in part to the prevalence of hypertension, cardiac failures and gastrointestinal problems within the study areas. Though the kaolinite present in the geophagic clays makes them suitable for use as traditional antacids; however, the toxic trace element concentrations and significant quartz content will most likely mask the beneficial effects of such kaolinite.