SEGH Articles

Tellus Border: Initial findings of a geo-environmental survey of the border region of Ireland

01 March 2013
The Tellus Border project is an EU INTERREG IVA-funded mapping project that involved baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland.

The Tellus Border project is an EU INTERREG IVA-funded mapping project that involves baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland. The Geological Survey of Ireland (GSI), Queen’s University Belfast and Dundalk Institute of Technology are partners in the cross-border initiative, which is led by the Geological Survey of Northern Ireland.

After the successful completion of an airborne geophysical survey and a multi-element geochemical survey in summer 2012, the three-year project is now in a data interpretation and mapping phase.  As part of the geochemical survey, over 21,000 samples of soil, stream water, sediment and vegetation were collected over an area spanning 12,300 km2 at an average density of 1 site per 4 km2.  Stream sediment, water and topsoil samples have now been analysed for a range of inorganic elements. The data will be of assistance to the agricultural sector in the assessment of soil trace elements, to environmental managers in the assessment of potentially harmful elements in the environment and to the mineral exploration community. Geochemical data will be released free-of-charge via in the months ahead; regional geochemical and geophysical maps are currently available to view online.

Flying nearly 60,000 line kilometers, the airborne survey aircraft collected data from three on-board instruments (magnetometer, electromagnetic system and gamma ray detector) while flying at a low altitude of 60m above ground level. The data is already being used for the improvement of geological mapping, the assessment of radon hazard, detection of landfill pollution plumes and the identification of areas for deep geothermal potential. The airborne survey data has revealed extraordinary new detail to regional geological features which extend throughout the border region. New understanding of subsurface structures such as faults and igneous dykes is already helping to improve and update the Geological Survey of Ireland’s existing geological maps, which support sustainable planning countrywide.

A conference will be held in October 2013 to present the full findings from the survey and accompanying academic research projects. To register for notifications for upcoming data releases, please email your details to


Mairead Glennon, Kate Knights ( and Ray Scanlon, Geological Survey of Ireland, Dublin.

27th February 2013


Keep up to date

SEGH Events

SEGH 2015 31st International Conference


22 June 2015

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Geospatial association between adverse birth outcomes and arsenic in groundwater in New Hampshire, USA 2014-10-19


    There is increasing evidence of the role of arsenic in the etiology of adverse human reproductive outcomes. Because drinking water can be a major source of arsenic to pregnant women, the effect of arsenic exposure through drinking water on human birth may be revealed by a geospatial association between arsenic concentration in groundwater and birth problems, particularly in a region where private wells substantially account for water supply, like New Hampshire, USA. We calculated town-level rates of preterm birth and term low birth weight (term LBW) for New Hampshire, by using data for 1997–2009 stratified by maternal age. We smoothed the rates by using a locally weighted averaging method to increase the statistical stability. The town-level groundwater arsenic probability values are from three GIS data layers generated by the US Geological Survey: probability of local groundwater arsenic concentration >1 µg/L, probability >5 µg/L, and probability >10 µg/L. We calculated Pearson’s correlation coefficients (r) between the reproductive outcomes (preterm birth and term LBW) and the arsenic probability values, at both state and county levels. For preterm birth, younger mothers (maternal age <20) have a statewide r = 0.70 between the rates smoothed with a threshold = 2,000 births and the town mean arsenic level based on the data of probability >10 µg/L; for older mothers, r = 0.19 when the smoothing threshold = 3,500; a majority of county level r values are positive based on the arsenic data of probability >10 µg/L. For term LBW, younger mothers (maternal age <25) have a statewide r = 0.44 between the rates smoothed with a threshold = 3,500 and town minimum arsenic concentration based on the data of probability >1 µg/L; for older mothers, r = 0.14 when the rates are smoothed with a threshold = 1,000 births and also adjusted by town median household income in 1999, and the arsenic values are the town minimum based on probability >10 µg/L. At the county level for younger mothers, positive r values prevail, but for older mothers, it is a mix. For both birth problems, the several most populous counties—with 60–80 % of the state’s population and clustering at the southwest corner of the state—are largely consistent in having a positive r across different smoothing thresholds. We found evident spatial associations between the two adverse human reproductive outcomes and groundwater arsenic in New Hampshire, USA. However, the degree of associations and their sensitivity to different representations of arsenic level are variable. Generally, preterm birth has a stronger spatial association with groundwater arsenic than term LBW, suggesting an inconsistency in the impact of arsenic on the two reproductive outcomes. For both outcomes, younger maternal age has stronger spatial associations with groundwater arsenic.

  • The arsenic contamination of rice in Guangdong Province, the most economically dynamic provinces of China: arsenic speciation and its potential health risk 2014-10-07


    Rice is a staple food in China, but it may contain toxic heavy metals. Hence, the concentrations of arsenic (As) species (AsIII, AsV, MMA and DMA) were evaluated in 260 rice samples from 13 cities of Guangdong Province, the most economically dynamic provinces of China. The levels of sum concentrations of As species in rice samples varied from non-detect to 225.58 ng g−1, with an average value of 57.27 ng g−1. The mean concentrations of the major As species detected in rice samples were in the order AsIII (34.77 ng g−1) > AsV (9.34 ng g−1) > DMA (8.33 ng g−1) > MMA (4.82 ng g−1). The rice samples of Guangdong Province were categorized as inorganic As type. Significant geographical variation of As speciation existed in rice samples of 13 cities of Guangdong Province by chi-square test (p < 0.05). The average human weekly intakes of inorganic As via rice consumption in Guangdong Province, southern China, were 1.91 µg kg−1 body weight. Hazard quotients of total As via rice consumption of adults in 13 cities ranged from 0.06 to 0.30, indicating the As contents in rice from Guangdong Province had no potential adverse impact on human health.

  • Selected papers from the 29th SEGH Conference on Environmental Geochemistry and Health 2014-10-01