SEGH Articles

Tellus Border: Initial findings of a geo-environmental survey of the border region of Ireland

01 March 2013
The Tellus Border project is an EU INTERREG IVA-funded mapping project that involved baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland.

The Tellus Border project is an EU INTERREG IVA-funded mapping project that involves baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland. The Geological Survey of Ireland (GSI), Queen’s University Belfast and Dundalk Institute of Technology are partners in the cross-border initiative, which is led by the Geological Survey of Northern Ireland.

After the successful completion of an airborne geophysical survey and a multi-element geochemical survey in summer 2012, the three-year project is now in a data interpretation and mapping phase.  As part of the geochemical survey, over 21,000 samples of soil, stream water, sediment and vegetation were collected over an area spanning 12,300 km2 at an average density of 1 site per 4 km2.  Stream sediment, water and topsoil samples have now been analysed for a range of inorganic elements. The data will be of assistance to the agricultural sector in the assessment of soil trace elements, to environmental managers in the assessment of potentially harmful elements in the environment and to the mineral exploration community. Geochemical data will be released free-of-charge via www.tellusborder.eu in the months ahead; regional geochemical and geophysical maps are currently available to view online.

Flying nearly 60,000 line kilometers, the airborne survey aircraft collected data from three on-board instruments (magnetometer, electromagnetic system and gamma ray detector) while flying at a low altitude of 60m above ground level. The data is already being used for the improvement of geological mapping, the assessment of radon hazard, detection of landfill pollution plumes and the identification of areas for deep geothermal potential. The airborne survey data has revealed extraordinary new detail to regional geological features which extend throughout the border region. New understanding of subsurface structures such as faults and igneous dykes is already helping to improve and update the Geological Survey of Ireland’s existing geological maps, which support sustainable planning countrywide.

A conference will be held in October 2013 to present the full findings from the survey and accompanying academic research projects. To register for notifications for upcoming data releases, please email your details to tellusborder@gsi.ie.

 

Mairead Glennon, Kate Knights (kate.knights@gsi.ie) and Ray Scanlon, Geological Survey of Ireland, Dublin.

27th February 2013

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Chemical characterization and health risk assessment of soil and airborne particulates metals and metalloids in populated semiarid region, Agra, India 2016-04-13

    Abstract

    Rapid industrialization and urbanization have contaminated air and soil by heavy metals and metalloids from biogenic, geogenic and anthropogenic sources in many areas of the world, either directly or indirectly. A case study was conducted in three different microenvironments, i.e., residential sites, official sites and official sites; for each sites, we choose two different locations to examine the elemental concentration in fine particulate matter and soil and health risk assessment. The concentration values of heavy metals and metalloid in the air and soil in the Agra region were measured using inductively coupled plasma-atomic emission spectrophotometry. The exposure factor and health risk assessment for carcinogenic and non-carcinogenic effects due to heavy metals and metalloid contaminants have been calculated for both children and adults by following the methodology prescribed by USEPA. For the elements As, Cr, Cd, Ni and Pb selected for the carcinogenic health risk assessment, the calculated results lie above the threshold ranges. We observed the lifetime exposure to heavy metals through mainly three pathways, ingestion, inhalation and dermal contact of soil and air from that particular area. Therefore, the overall hazard quotient (HQ) values for children are more than that of adults. The assessment of health risk signifies that there were mainly three exposure pathways for people: ingested, dermal contact and inhalation. The major exposure pathway of heavy metals to both children and adults is ingestion. The values of HQ are higher than the safe level (=1), indicating a high risk exists in present condition. Meanwhile, HQs value for children is higher than that for adults, indicating that children have higher potential health risk than adults in this region.

  • Distribution and translocation of selenium from soil to highland barley in the Tibetan Plateau Kashin-Beck disease area 2016-04-12

    Abstract

    Kashin–Beck disease (KBD), which is still active and severe in the Tibetan Plateau, is considered to be a kind of selenium (Se)-deficient disease. Highland barley as the most popular staple food in the Tibetan Plateau is one of the dominant Se sources for local people. To improve Se levels in crops in the Tibetan Plateau KBD area, the distribution and translocation of Se from soil to highland barley in both non-KBD and KBD endemic areas were investigated. The results showed that Se levels in highland barley were too low to meet the minimum requirements of human for daily intake of Se. The total Se concentrations of highland barley fractions in KBD areas were lower than that in non-KBD areas (grain P = 0.238; straw P = 0.087; root P = 0.008). However, no significant difference was observed in corresponding cultivated soil Se between the two areas (P = 0.993). The calculation of Se transfer factors indicated that the restricting step for Se translocation was from soil to root. Water-soluble, exchangeable and fulvic acid-bound Se fractions in the soil are key species dominating in this transfer process, according to their significant correlations with root Se. Se transfer from soil to root significantly increases as the pH value of soil increases (P = 0.007), and soil organic matter content decreases (P = 0.019). The information obtained may have considerable significance for proposing effective agricultural measures to increase grain Se in KBD endemic areas.

  • Use of Maize ( Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review 2016-04-09

    Abstract

    Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.