SEGH Articles

Tellus Border: Initial findings of a geo-environmental survey of the border region of Ireland

01 March 2013
The Tellus Border project is an EU INTERREG IVA-funded mapping project that involved baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland.

The Tellus Border project is an EU INTERREG IVA-funded mapping project that involves baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland. The Geological Survey of Ireland (GSI), Queen’s University Belfast and Dundalk Institute of Technology are partners in the cross-border initiative, which is led by the Geological Survey of Northern Ireland.

After the successful completion of an airborne geophysical survey and a multi-element geochemical survey in summer 2012, the three-year project is now in a data interpretation and mapping phase.  As part of the geochemical survey, over 21,000 samples of soil, stream water, sediment and vegetation were collected over an area spanning 12,300 km2 at an average density of 1 site per 4 km2.  Stream sediment, water and topsoil samples have now been analysed for a range of inorganic elements. The data will be of assistance to the agricultural sector in the assessment of soil trace elements, to environmental managers in the assessment of potentially harmful elements in the environment and to the mineral exploration community. Geochemical data will be released free-of-charge via in the months ahead; regional geochemical and geophysical maps are currently available to view online.

Flying nearly 60,000 line kilometers, the airborne survey aircraft collected data from three on-board instruments (magnetometer, electromagnetic system and gamma ray detector) while flying at a low altitude of 60m above ground level. The data is already being used for the improvement of geological mapping, the assessment of radon hazard, detection of landfill pollution plumes and the identification of areas for deep geothermal potential. The airborne survey data has revealed extraordinary new detail to regional geological features which extend throughout the border region. New understanding of subsurface structures such as faults and igneous dykes is already helping to improve and update the Geological Survey of Ireland’s existing geological maps, which support sustainable planning countrywide.

A conference will be held in October 2013 to present the full findings from the survey and accompanying academic research projects. To register for notifications for upcoming data releases, please email your details to


Mairead Glennon, Kate Knights ( and Ray Scanlon, Geological Survey of Ireland, Dublin.

27th February 2013


Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Seeking evidence of multidisciplinarity in environmental geochemistry and health: an analysis of arsenic in drinking water research 2017-02-24


    A multidisciplinary approach to research affords the opportunity of objectivity, creation of new knowledge and potentially a more generally acceptable solution to problems that informed the research in the first place. It increasingly features in national programmes supporting basic and applied research, but for over 40 years, has been the arena for many research teams in environmental geochemistry and health. This study explores the nature of multidisciplinary research in the earth and health sciences using a sample selected from co-authored articles reporting research on arsenic (As) in drinking water from 1979 to 2013. A total of 889 relevant articles were sourced using the online version of the science citation index—expanded (SCI-expanded). The articles were classified according to author affiliation and later by author discipline/research interests using the Revised Field of Science and Technology Frascati manual DSTI/EAS/STP/NESTI (2006) 19/FINAL and a decision algorithm. Few articles were published on the topic until 2000. More articles were published across all affiliations in the last 10 years of the review period (2004–2013) than in the first 10 years (1979–1988). Only 84 (~9%) articles fell within the “earth and health” only and “earth, health and other” categories when classification was undertaken by author affiliation alone. This suggests that level of collaboration between earth and health scientists in arsenic in drinking water research may be very low. By refining the classification further using author discipline/research interests, only 28 of the 84 articles appear to be co-authored by earth and health scientists alongside professionals in other fields. More than half of these 28 articles involved descriptive non-experimental, observational study designs, limited in direct causal hypotheses and mechanistic investigation. If collaborative research is to lead to the increased multidisciplinary research, early interaction should be encouraged between students from different disciplines. In order to achieve multidisciplinarity in practise, it is imperative that scientific communities and research agencies do more to encourage interaction and integration between researchers from different disciplines. This must develop from educational institutions seeing opportunities to improve graduate skills in an increasingly diverse research landscape.

  • The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China 2017-02-23


    Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water–rock–hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water–rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T2g3) and upper of Yongningzhen formation (T1yn4). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.

  • Potential ecological risk assessment and predicting zinc accumulation in soils 2017-02-22


    The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil–zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg−1 d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining–metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran’s correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg−1 d.m. (0.01 mol dm−3 CaCl2), and between 0.03 and 71.54 mg kg−1 d.m. (1 mol dm−3 NH4NO3). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90% of the soils there were no potentially negative effects of zinc to ecological receptors.