SEGH Articles

SEGH membership

05 February 2014
A hidden opportunity: Collaborative Development of teaching and learning in Environmental Geochemistry and Health at the Department of Geology, University of Calabar, Nigeria

 

The topic of Environmental Geochemistry has existed as a postgraduate course of study in the Department of Geology, University of Calabar in Nigeria for the past eighteen years. After my Commonwealth Academic Fellowship in 2008-2009, hosted by Prof A.S Hursthouse at the School of Science, University of the West of Scotland, I became a member of SEGH. The skills acquired during this period and as a registered member of SEGH, we decided to review the existing environmental geochemistry curriculum during my tenure as the Head of Department in 2012, since being established in 1976, its first female to hold that post.

 

Through my colleagues in SEGH, I was able to consult widely with members of the International SEGH board to review and gather opinion on the programme topics and syllabus content. This exercise was of great help and a real benefit to get feedback from the environmental geochemistry and health community, giving a real international perspective. It has helped to provide a good justification for changes to the programme in discussion with our University. The course was approved as an area of specialization under Environmental Geoscience section starting from 2013/2014 session. It is among the courses currently being advertised by the graduate school for this session and it will be in cooperated into the new graduate school brochure of the University to help to give it a wider publicity. It is anticipated that in future this will be extended to the undergraduate level when the curriculum will be reviewed as well.

We also hope that with further support from the members of SEGH we will be able to carry out some collaborative research where we lack the necessary laboratory facilities and some graduate students will be able to benefit from the expertise of SEGH members as the need arises.

At this juncture, I would like to thank members of SEGH for their input in structuring of the curriculum.

 

Dr Therese Nganje

University of Calabar

 

 

Pictures:

  1. Dr Therese Nganje with Departmental alumni, 2012
  2. Students of the Department of Geology, University of Calabar, 2012
  3. University of Calabar
Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23

    Abstract

    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18

    Abstract

    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.