SEGH Articles

In Malawi "simple is not easy"

01 March 2013
Effectiveness of sanitation, hygiene practices, and water supply interventions serving Malawi and the surrounding countries.

Dr Rochelle Holm's home is Mzuzu in Malawi, but she is originally from Washington State in the USA.  Rochelle served as a volunteer for 10 years leading African natural resource management and water quality projects before accepting the current permanent position at Mzuzu University. For 8 years Rochelle managed $1M/year soil and groundwater clean-up projects for the United States Department of Energy and Department of Defense.  Rochelle also served as a Natural Resource Management Peace Corps Volunteer in Mali, West Africa, 2002-2003.  Through Rochelle's volunteer experiences,  relationships were developed, and combined with her professional project management experience, led her to have a passion for the water and sanitation sector throughout Africa, a great fit for Rochelle's current role.

 

In Malawi, “simple is not easy”

Environmental Science is not always simple, though in the northern region of Malawi, Africa, there is a saying “simple is not easy.”   Malawi is a developing country located in southeastern Africa.  In 2009, the Mzuzu University Centre of Excellence in Water and Sanitation was established under the Department of Water Resources Management and Development within the Faculty of Environmental Sciences.  The primary objective of the Centre is to improve the effectiveness of sanitation, hygiene practices, and water supply interventions serving Malawi and the surrounding countries.  The Centre participates in applied research, water quality analysis, training, consultancies, outreach programs, and the practical application of research findings.  More importantly, the Centre through the Department of Water Resources Management is offering a degree programme in Water and Sanitation, which is an important link to the dissemination and documentation of research findings.

 

As an extension of the Mzuzu University Centre of Excellence in Water and Sanitation, in 2012 the Smart Centre was opened focusing on the practical implementation of low-cost household level water and sanitation technologies.  In contrast to the typical approach by non-governmental organisations and the donor community, the Smart Centre focuses on building capacity in water and sanitation focused businesses in Malawi.  This is accomplished through promotion of appropriate technology, training of Malawians and build-up of businesses to support self-supply.  The SMART Centre provides long-term sustainability and scaling up for water and sanitation technologies by building up the capacity of local entrepreneurs.   While the Centre of Excellence in Water and Sanitation can provide the scientific requirements per design of solutions and interventions, prompting of technologies on the ground is covered by the SMART Centre.  For example, the SMART Centre is currently prompting the use of a no-cement latrine design intended to last a family 7 years, allowing scale up of self-supply capacity for improved household sanitation.

Main activities at the Smart Centre include:

  • Support activities that will improve access to safe and clean water and sanitation with a focus on peri-urban and rural areas
  • Demonstration of a range of  innovative and affordable water and sanitation technologies
  • Training of the local private sector in manual well drilling, production of rope pumps, groundwater recharge, water storage tanks, irrigation, water filters, latrines  and other technologies
  • Support local businesses with training in production, maintenance, business management skills and formation of associations
  • Courses for NGOs and others in sustainable water supply and sanitation

 

Through a combination of research being conducted at the Centre of Excellence in Water and Sanitation and practical implementation led by the SMART Centre, this team at Mzuzu University is one of the only organisations in Malawi with such an emphasis on water and sanitation self-supply, thus making ‘simple’ a bit ‘easier.’

Dr Rochelle Holm,

Mzuzu University, Centre of Excellence in Water and Sanitation and SMART Centre Manager, Mzuzu, Malawi

rochelledh@hotmail.com

 

 

Keep up to date

SEGH Events

SEGH 2015 31st International Conference

Bratislava

22 June 2015

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Increase in platinum group elements in Mexico City as revealed from growth rings of Taxodium mucronatum ten 2015-04-24

    Abstract

    Tree rings may be used as indicators of contamination events providing information on the chronology and the elemental composition of the contamination. In this framework, we report PGEs enrichment in growth rings of Taxodium mucronatum ten for trees growing in the central area of Mexico City as compared to trees growing in a non-urban environment. Concentrations of PGE were determined by ICP-MS analysis on microwave-digested tree rings. The element found in higher concentrations was Pd (1.13–87.98 μg kg−1), followed by Rh (0.28–36.81 μg kg−1) and Pt (0.106–7.21 μg kg−1). The concentration trends of PGEs in the tree-ring sequences from the urban area presented significant correlation values when comparing between trees (r between 0.618 and 0.98, P < 0.025) and between elements within individual trees (r between 0.76 and 0.994, P < 0.01). Furthermore, a clear increase was observed for rings after 1997, with enrichment of up to 60 times the mean concentration found for the sequence from the non-urban area and up to 40 times the mean concentration for the pre-1991 period in the urban trees. These results also demonstrate the feasibility of applying T. mucronatum ten to be used as a bioindicator of the increase in PGE in urban environments.

  • Trace elements distributions at Datoko-Shega artisanal mining site, northern Ghana 2015-04-24

    Abstract

    Environmental geochemistry classifies elements into essential, non-essential and toxic elements in relationship to human health. To assess the environmental impact of mining at Datoko-Shega area, the distributions and concentrations of trace elements in stream sediments and soil samples were carried out. X-ray fluorescence analytical technique was used to measure the major and trace element concentrations in sediments and modified fire assay absorption spectrometry in soils. The results showed general depletion of major elements except titanium oxide (TiO2) compared to the average crustal concentrations. The retention of TiO2 at the near surface environment probably was due to the intense tropical weathering accompanied by the removal of fine sediments and soil fractions during the harmattan season by the dry north-east trade winds and sheet wash deposits formed after flash floods. The results also showed extreme contamination of selenium (Se), cadmium (Cd) and mercury (Hg), plus strong contaminations of arsenic (As) and chromium (Cr) in addition to moderate contamination of lead (Pb) in the trace element samples relative to crustal averages in the upper continental crust. However Hg, Pb and Cd concentrations tend to be high around the artisanal workings. It was recognised from the analysis of the results that the artisanal mining activity harnessed and introduces some potentially toxic elements such as Hg, Cd and Pb mostly in the artisan mine sites. But the interpretation of the trace element data thus invalidates the elevation of As concentrations to be from the mine operations. It consequently noticed As values in the mine-impacted areas to be similar or sometimes lower than As values in areas outside the mine sites from the stream sediment results.

  • A gradient of mercury concentrations in Scottish single malt whiskies 2015-04-18

    Abstract

    Mercury (Hg) concentrations were measured in 26 Scottish single malt whiskies, and all found to be very low (<10 ng L−1), posing no threat to human health through reasonable levels of consumption. However, a significant south-to-north declining gradient in Hg concentrations was observed reflecting that reported for atmospheric deposition. We speculate that this gradient could be due to a combination of contemporary deposition and the legacy of industrial mercury emissions and deposition over the last 200 years affecting concentrations in local waters used in whisky production. As UK atmospheric emissions of mercury have declined by 90 % since the 1970s, we suggest that whisky being produced today should have even lower Hg concentrations when consumed in 10- to 15-years time. This reduction may be compromised by the remobilisation of contaminants stored in catchment soils being transferred to source waters, but is very unlikely to raise the negligible health risk due to Hg from Scottish single malt whisky consumption.