SEGH Articles

In Malawi "simple is not easy"

01 March 2013
Effectiveness of sanitation, hygiene practices, and water supply interventions serving Malawi and the surrounding countries.

Dr Rochelle Holm's home is Mzuzu in Malawi, but she is originally from Washington State in the USA.  Rochelle served as a volunteer for 10 years leading African natural resource management and water quality projects before accepting the current permanent position at Mzuzu University. For 8 years Rochelle managed $1M/year soil and groundwater clean-up projects for the United States Department of Energy and Department of Defense.  Rochelle also served as a Natural Resource Management Peace Corps Volunteer in Mali, West Africa, 2002-2003.  Through Rochelle's volunteer experiences,  relationships were developed, and combined with her professional project management experience, led her to have a passion for the water and sanitation sector throughout Africa, a great fit for Rochelle's current role.

 

In Malawi, “simple is not easy”

Environmental Science is not always simple, though in the northern region of Malawi, Africa, there is a saying “simple is not easy.”   Malawi is a developing country located in southeastern Africa.  In 2009, the Mzuzu University Centre of Excellence in Water and Sanitation was established under the Department of Water Resources Management and Development within the Faculty of Environmental Sciences.  The primary objective of the Centre is to improve the effectiveness of sanitation, hygiene practices, and water supply interventions serving Malawi and the surrounding countries.  The Centre participates in applied research, water quality analysis, training, consultancies, outreach programs, and the practical application of research findings.  More importantly, the Centre through the Department of Water Resources Management is offering a degree programme in Water and Sanitation, which is an important link to the dissemination and documentation of research findings.

 

As an extension of the Mzuzu University Centre of Excellence in Water and Sanitation, in 2012 the Smart Centre was opened focusing on the practical implementation of low-cost household level water and sanitation technologies.  In contrast to the typical approach by non-governmental organisations and the donor community, the Smart Centre focuses on building capacity in water and sanitation focused businesses in Malawi.  This is accomplished through promotion of appropriate technology, training of Malawians and build-up of businesses to support self-supply.  The SMART Centre provides long-term sustainability and scaling up for water and sanitation technologies by building up the capacity of local entrepreneurs.   While the Centre of Excellence in Water and Sanitation can provide the scientific requirements per design of solutions and interventions, prompting of technologies on the ground is covered by the SMART Centre.  For example, the SMART Centre is currently prompting the use of a no-cement latrine design intended to last a family 7 years, allowing scale up of self-supply capacity for improved household sanitation.

Main activities at the Smart Centre include:

  • Support activities that will improve access to safe and clean water and sanitation with a focus on peri-urban and rural areas
  • Demonstration of a range of  innovative and affordable water and sanitation technologies
  • Training of the local private sector in manual well drilling, production of rope pumps, groundwater recharge, water storage tanks, irrigation, water filters, latrines  and other technologies
  • Support local businesses with training in production, maintenance, business management skills and formation of associations
  • Courses for NGOs and others in sustainable water supply and sanitation

 

Through a combination of research being conducted at the Centre of Excellence in Water and Sanitation and practical implementation led by the SMART Centre, this team at Mzuzu University is one of the only organisations in Malawi with such an emphasis on water and sanitation self-supply, thus making ‘simple’ a bit ‘easier.’

Dr Rochelle Holm,

Mzuzu University, Centre of Excellence in Water and Sanitation and SMART Centre Manager, Mzuzu, Malawi

rochelledh@hotmail.com

 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Alterations in antioxidant defense system of workers chronically exposed to arsenic, cadmium and mercury from coal flying ash 2016-02-01

    Abstract

    Humans are exposed to different stress factors that are responsible for over-production of reactive oxygen species. Exposure to heavy metals is one of these factors. The aim of the study was to analyze the effect of chronic exposure to heavy metals through coal flying ash on the efficiency of antioxidative defensive mechanisms, represented by the activity of superoxide dismutase, glutathione peroxidase and ascorbic acid. Nonessential elements such as arsenic and mercury levels showed a significant increase (p > 0.001) in the power plant workers rather than in the control subjects. There were no significant differences of blood cadmium between power plant workers and control subjects. We found a significant positive correlation (p < 0.05) between BAs/SZn (r = 0.211), BAs/BSe (r = 0.287), BCd/SCu (r = 0.32) and BHg/BSe (r = 0.263) in the plant workers. Red blood cell antioxidant enzymes and plasma ascorbic acid were significantly lower in power plants workers than in the control group (p < 0.002). We can conclude that levels of mercury, arsenic and cadmium in blood, despite their concentration within the reference values, significantly affect plasma ascorbic acid concentration, superoxide dismutase and glutathione peroxidase activity, which are able to increase the risk of oxidative stress.

  • Increase in platinum group elements in Mexico City as revealed from growth rings of Taxodium mucronatum ten 2016-02-01

    Abstract

    Tree rings may be used as indicators of contamination events providing information on the chronology and the elemental composition of the contamination. In this framework, we report PGEs enrichment in growth rings of Taxodium mucronatum ten for trees growing in the central area of Mexico City as compared to trees growing in a non-urban environment. Concentrations of PGE were determined by ICP-MS analysis on microwave-digested tree rings. The element found in higher concentrations was Pd (1.13–87.98 μg kg−1), followed by Rh (0.28–36.81 μg kg−1) and Pt (0.106–7.21 μg kg−1). The concentration trends of PGEs in the tree-ring sequences from the urban area presented significant correlation values when comparing between trees (r between 0.618 and 0.98, P < 0.025) and between elements within individual trees (r between 0.76 and 0.994, P < 0.01). Furthermore, a clear increase was observed for rings after 1997, with enrichment of up to 60 times the mean concentration found for the sequence from the non-urban area and up to 40 times the mean concentration for the pre-1991 period in the urban trees. These results also demonstrate the feasibility of applying T. mucronatum ten to be used as a bioindicator of the increase in PGE in urban environments.

  • Heavy metals and parasitic geohelminths toxicity among geophagous pregnant women: a case study of Nakuru Municipality, Kenya 2016-02-01

    Abstract

    Geophagia is defined as deliberate consumption of earths’ materials, e.g. soil, clay and soft stones. The practice is widespread among pregnant women, and there are conflicting views as to whether it is beneficial to health or not. Geophagic materials may be a source of micronutrients though the materials may bind the micronutrients thus reducing or hindering their bioavailability in the body. Geophagia is closely associated with geohelminthic infections among pregnant women and heavy metal poisoning, which constitute significant public health problem in many developing countries such as Kenya. In our research, the geophagic materials consumed by the pregnant women were studied. A total of 38 geophagic materials in the possession by different pregnant women were analysed. The collected samples were subjected to standard digestion procedures and analysed for zinc, lead and iron by atomic absorption spectroscopy. Results indicated that the geophagic materials contained elevated levels of Fe at mean concentration value of 80.10 ppm, Pb at 3.28 ppm and Zn 1.81 ppm for a 1.00 g sample. An average of 20 g of the geophagic materials was being consumed per day. Based on the average consumption, the pregnant women were exposed to 65.52 ppm Pb per day, 36.2 ppm Zn per day and 1602 ppm Fe per day. Lead exceeded the WHO-lead exposure limits of 25 ppm/day for pregnant women. The materials were also subjected to microscopic examination for Ascaris lumbricoides, Trichuris trichiura, Taenia Spp., Necator americanus and Ancylostoma duodenale. In conclusion, the women were exposed to heavy metals—iron, zinc and lead, but there was no observable eggs, larvae or adult species of the geohelminths. The key recommendation was that there is need to integrate public health education on geophagia, lead screening and testing with antenatal support care systems. This will enhance maternal and child health, thus reducing infant and maternal morbidity and mortality rates.