SEGH Articles

In Malawi "simple is not easy"

01 March 2013
Effectiveness of sanitation, hygiene practices, and water supply interventions serving Malawi and the surrounding countries.

Dr Rochelle Holm's home is Mzuzu in Malawi, but she is originally from Washington State in the USA.  Rochelle served as a volunteer for 10 years leading African natural resource management and water quality projects before accepting the current permanent position at Mzuzu University. For 8 years Rochelle managed $1M/year soil and groundwater clean-up projects for the United States Department of Energy and Department of Defense.  Rochelle also served as a Natural Resource Management Peace Corps Volunteer in Mali, West Africa, 2002-2003.  Through Rochelle's volunteer experiences,  relationships were developed, and combined with her professional project management experience, led her to have a passion for the water and sanitation sector throughout Africa, a great fit for Rochelle's current role.

 

In Malawi, “simple is not easy”

Environmental Science is not always simple, though in the northern region of Malawi, Africa, there is a saying “simple is not easy.”   Malawi is a developing country located in southeastern Africa.  In 2009, the Mzuzu University Centre of Excellence in Water and Sanitation was established under the Department of Water Resources Management and Development within the Faculty of Environmental Sciences.  The primary objective of the Centre is to improve the effectiveness of sanitation, hygiene practices, and water supply interventions serving Malawi and the surrounding countries.  The Centre participates in applied research, water quality analysis, training, consultancies, outreach programs, and the practical application of research findings.  More importantly, the Centre through the Department of Water Resources Management is offering a degree programme in Water and Sanitation, which is an important link to the dissemination and documentation of research findings.

 

As an extension of the Mzuzu University Centre of Excellence in Water and Sanitation, in 2012 the Smart Centre was opened focusing on the practical implementation of low-cost household level water and sanitation technologies.  In contrast to the typical approach by non-governmental organisations and the donor community, the Smart Centre focuses on building capacity in water and sanitation focused businesses in Malawi.  This is accomplished through promotion of appropriate technology, training of Malawians and build-up of businesses to support self-supply.  The SMART Centre provides long-term sustainability and scaling up for water and sanitation technologies by building up the capacity of local entrepreneurs.   While the Centre of Excellence in Water and Sanitation can provide the scientific requirements per design of solutions and interventions, prompting of technologies on the ground is covered by the SMART Centre.  For example, the SMART Centre is currently prompting the use of a no-cement latrine design intended to last a family 7 years, allowing scale up of self-supply capacity for improved household sanitation.

Main activities at the Smart Centre include:

  • Support activities that will improve access to safe and clean water and sanitation with a focus on peri-urban and rural areas
  • Demonstration of a range of  innovative and affordable water and sanitation technologies
  • Training of the local private sector in manual well drilling, production of rope pumps, groundwater recharge, water storage tanks, irrigation, water filters, latrines  and other technologies
  • Support local businesses with training in production, maintenance, business management skills and formation of associations
  • Courses for NGOs and others in sustainable water supply and sanitation

 

Through a combination of research being conducted at the Centre of Excellence in Water and Sanitation and practical implementation led by the SMART Centre, this team at Mzuzu University is one of the only organisations in Malawi with such an emphasis on water and sanitation self-supply, thus making ‘simple’ a bit ‘easier.’

Dr Rochelle Holm,

Mzuzu University, Centre of Excellence in Water and Sanitation and SMART Centre Manager, Mzuzu, Malawi

rochelledh@hotmail.com

 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Study of the interactions of dissolved organic matter with zinc ion and the impact of competitive metal ions (Ca 2+ and Mg 2+ ) by in situ absorbance 2017-06-22

    Abstract

    The bioavailability and toxicity of zinc to aquatic life depend on dissolved organic matter (DOM), such as Suwannee River Fulvic Acid (SRFA), which plays an important role in the speciation of zinc. This study examined reactions of SRFA with zinc at different concentrations from pH 3.0 to 9.0, and competitive binding of calcium/magnesium and zinc to SRFA at pH 6.0, using in situ absorbance. Interactions of Zn2+ with SRFA chromophores were evidenced by the emergence of features in Zn-differential spectra. Among all Zn2+–SRFA systems, dominant peaks, located at 235, 275 and 385 nm, and the highest intensity at 235 nm indicated the replacement of protons by the bound Zn2+. The Zn2+ binding with SRFA could be quantified by calculating the changes of the slopes of Zn-differential log-transformed absorbance in the wavelength range of 350–400 nm (denoted as DS350–400) and by comparing the experimental data with predictions using the Non-Ideal Competitive Adsorption (NICA–Donnan) model. DS350–400 was correlated well with the bound Zn2+ concentrations predicted by NICA–Donnan model with or without Ca2+ or Mg2+. Ca2+ and Mg2+ only affect intensity of the Zn-differential and Zn-differential log-transformed absorbance, not shape. In situ absorbance can be used to gain further information about Men+–DOM interactions in the presence of various metals.

  • Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area 2017-06-16

    Abstract

    Reactive oxygen species (ROS)-induced DNA damage occurs in heavy metal exposure, but the simultaneous effect on DNA repair is unknown. We investigated the influence of co-exposure of lead (Pb), cadmium (Cd), and mercury (Hg) on 8-hydroxydeoxyguanosine (8-OHdG) and human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) mRNA levels in exposed children to evaluate the imbalance of DNA damage and repair. Children within the age range of 3–6 years from a primitive electronic waste (e-waste) recycling town were chosen as participants to represent a heavy metal-exposed population. 8-OHdG in the children’s urine was assessed for heavy metal-induced oxidative effects, and the hOGG1 mRNA level in their blood represented the DNA repair ability of the children. Among the children surveyed, 88.14% (104/118) had a blood Pb level >5 μg/dL, 22.03% (26/118) had a blood Cd level >1 μg/dL, and 62.11% (59/95) had a blood Hg level >10 μg/dL. Having an e-waste workshop near the house was a risk factor contributing to high blood Pb (r s  = 0.273, p < 0.01), while Cd and Hg exposure could have come from other contaminant sources. Preschool children of fathers who had a college or university education had significantly lower 8-OHdG levels (median 242.76 ng/g creatinine, range 154.62–407.79 ng/g creatinine) than did children of fathers who had less education (p = 0.035). However, we did not observe a significant difference in the mRNA expression levels of hOGG1 between the different variables. Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels (β Q2 = 0.362, 95% CI 0.111–0.542; β Q3 = 0.347, 95% CI 0.103–0.531; β Q4 = 0.314, 95% CI 0.087–0.557). Associations between blood Hg levels and 8-OHdG were less apparent. Compared with low levels of blood Hg (quartile 1), elevated blood Hg levels (quartile 2) were associated with higher 8-OHdG levels (β Q2 = 0.236, 95% CI 0.039–0.406). Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels.

  • Effect of biosolid hydrochar on toxicity to earthworms and brine shrimp 2017-06-15

    Abstract

    The hydrothermal carbonization of sewage sludge has been studied as an alternative technique for the conversion of sewage sludge into value-added products, such as soil amendments. We tested the toxicity of biosolid hydrochar (Sewchar) to earthworms. Additionally, the toxicity of Sewchar process water filtrate with and without pH adjustment was assessed, using brine shrimps as a model organism. For a Sewchar application of 40 Mg ha−1, the earthworms significantly preferred the side of the vessel with the reference soil (control) over side of the vessel with the Sewchar treatments. There was no acute toxicity of Sewchar to earthworms within the studied concentration range (up to 80 Mg ha−1). Regarding the Sewchar process water filtrate, the median lethal concentration (LC50) to the shrimps was 8.1% for the treatments in which the pH was not adjusted and 54.8% for the treatments in which the pH was adjusted to 8.5. The lethality to the shrimps significantly increased as the amount of Sewchar process water filtrate increased. In the future, specific toxic substances in Sewchar and its process water filtrate, as well as their interactions with soil properties and their impacts on organisms, should be elucidated. Additionally, it should be identified whether the amount of the toxic compounds satisfies the corresponding legal requirements for the safe application of Sewchar and its process water filtrate.