SEGH Articles

In Malawi "simple is not easy"

01 March 2013
Effectiveness of sanitation, hygiene practices, and water supply interventions serving Malawi and the surrounding countries.

Dr Rochelle Holm's home is Mzuzu in Malawi, but she is originally from Washington State in the USA.  Rochelle served as a volunteer for 10 years leading African natural resource management and water quality projects before accepting the current permanent position at Mzuzu University. For 8 years Rochelle managed $1M/year soil and groundwater clean-up projects for the United States Department of Energy and Department of Defense.  Rochelle also served as a Natural Resource Management Peace Corps Volunteer in Mali, West Africa, 2002-2003.  Through Rochelle's volunteer experiences,  relationships were developed, and combined with her professional project management experience, led her to have a passion for the water and sanitation sector throughout Africa, a great fit for Rochelle's current role.

 

In Malawi, “simple is not easy”

Environmental Science is not always simple, though in the northern region of Malawi, Africa, there is a saying “simple is not easy.”   Malawi is a developing country located in southeastern Africa.  In 2009, the Mzuzu University Centre of Excellence in Water and Sanitation was established under the Department of Water Resources Management and Development within the Faculty of Environmental Sciences.  The primary objective of the Centre is to improve the effectiveness of sanitation, hygiene practices, and water supply interventions serving Malawi and the surrounding countries.  The Centre participates in applied research, water quality analysis, training, consultancies, outreach programs, and the practical application of research findings.  More importantly, the Centre through the Department of Water Resources Management is offering a degree programme in Water and Sanitation, which is an important link to the dissemination and documentation of research findings.

 

As an extension of the Mzuzu University Centre of Excellence in Water and Sanitation, in 2012 the Smart Centre was opened focusing on the practical implementation of low-cost household level water and sanitation technologies.  In contrast to the typical approach by non-governmental organisations and the donor community, the Smart Centre focuses on building capacity in water and sanitation focused businesses in Malawi.  This is accomplished through promotion of appropriate technology, training of Malawians and build-up of businesses to support self-supply.  The SMART Centre provides long-term sustainability and scaling up for water and sanitation technologies by building up the capacity of local entrepreneurs.   While the Centre of Excellence in Water and Sanitation can provide the scientific requirements per design of solutions and interventions, prompting of technologies on the ground is covered by the SMART Centre.  For example, the SMART Centre is currently prompting the use of a no-cement latrine design intended to last a family 7 years, allowing scale up of self-supply capacity for improved household sanitation.

Main activities at the Smart Centre include:

  • Support activities that will improve access to safe and clean water and sanitation with a focus on peri-urban and rural areas
  • Demonstration of a range of  innovative and affordable water and sanitation technologies
  • Training of the local private sector in manual well drilling, production of rope pumps, groundwater recharge, water storage tanks, irrigation, water filters, latrines  and other technologies
  • Support local businesses with training in production, maintenance, business management skills and formation of associations
  • Courses for NGOs and others in sustainable water supply and sanitation

 

Through a combination of research being conducted at the Centre of Excellence in Water and Sanitation and practical implementation led by the SMART Centre, this team at Mzuzu University is one of the only organisations in Malawi with such an emphasis on water and sanitation self-supply, thus making ‘simple’ a bit ‘easier.’

Dr Rochelle Holm,

Mzuzu University, Centre of Excellence in Water and Sanitation and SMART Centre Manager, Mzuzu, Malawi

rochelledh@hotmail.com

 

 

Keep up to date

SEGH Events

SEGH 2015 31st International Conference

Bratislava

22 June 2015

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Chronic kidney disease of unknown aetiology and ground-water ionicity: study based on Sri Lanka 2014-08-14

    Abstract

    High incidence of chronic kidney disease of unknown aetiology (CKDU) in Sri Lanka is shown to correlate with the presence of irrigation works and rivers that bring-in ‘nonpoint source’ fertilizer runoff from intensely agricultural regions. We review previous attempts to link CKDU with As, Cd and other standard toxins. Those studies (e.g. the WHO-sponsored study), while providing a wealth of data, are inconclusive in regard to aetiology. Here, we present new proposals based on increased ionicity of drinking water due to fertilizer runoff into the river system, redox processes in the soil and features of ‘tank’-cascades and aquifers. The consequent chronic exposure to high ionicity in drinking water is proposed to debilitate the kidney via a Hofmeister-type (i.e. protein-denaturing) mechanism.

  • Seasonal variation and source apportionment of organic tracers in PM10 in Chengdu, China 2014-08-14

    Abstract

    Organic compound tracers including n-alkanes, triterpane, sterane, polycyclic aromatic hydrocarbons (PAHs) and dicarboxylic acids of airborne particulate matter (PM10) were characterized for samples collected at five sites from July 2010 to March 2011 using GC/MS. Spatial and temporal variations of these organic tracers in PM10 were studied, and their sources were then identified respectively. Average daily concentrations of PM10 varied in different seasons with the trend of PM10 in winter (0.133 mg/m3) > autumn (0.120 mg/m3) > spring (0.103 mg/m3) > summer (0.098 mg/m3). Daily concentrations of n-alkanes (C11–C36) ranged from 12.11 to 163.58 ng/m3 with a mean of 61.99 ng/m3. The C max and CPI index of n-alkanes indicated that vehicle emissions were the major source in winter, while the contributions of high plant wax emissions became significant in other seasons. It was discovered that the main sources of triterpenoid and steranes were gasoline and diesel engine emissions. Concentrations of ∑15PAHs in PM10 also varied (12.25–58.56 ng/m3) in different seasons, and chrysene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi) perylene and fluoranthene were the dominant components. In the four seasons, the concentration of ∑15PAHs was relatively higher at the northern site because of traffic congestion. The main source of airborne PAHs was traffic emissions and coal combustion. Average daily concentrations of dicarboxylic acids (C4–C10) in PM10 ranged from 12.11 to 163.58 ng/m3, of which azeleic acid was the major compound (0.49–52.04 ng/m3, average 14.93 ng/m3), followed by succinic acid (0.56–19.08 ng/m3, average 6.84 ng/m3). The ratio of C6/C9 showed that the major source in winter was biological, while the contributions of emissions from anthropogenic activities were much higher in summer.

  • Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China 2014-08-13

    Abstract

    Occurrence of five estrogens, including estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2) and bisphenol A (BPA) in water, sediment and biota in Northern Taihu Lake, were investigated and their ecological risk was evaluated. Most of the target estrogens were widely distributed in the eight studied sampling sites, and their levels showed a regional trend of Gong Bay > Meiliang Bay > Zhushan Bay. The average concentrations of E1, E2, E3, EE2 and BPA ranged from 3.86 to 64.4 ng l−1, 44.3 to 64.1 μg kg−1 dry weight and 58.6 to 115 μg kg−1 dry weight in water, sediments and biota, respectively. In most cases, the average concentrations of BPA and E2 were higher than those of other estrogens. E1, E3 and EE2 were found to be accumulated in river snails with bioaccumulation factor values as high as 14,204, 35,327 and 20,127 l kg−1, respectively. E3 was also considered to be accumulated in clams. The evaluation of environmental risk showed that the occurrence of E2 and EE2 in lakes might pose a high risk to aquatic organisms. These findings provide important information for estrogen control and management in the studied area.