SEGH Articles

Exposure to Arsenic And Other Toxic Elements Through Eating Earth

01 February 2012
The practice of deliberately eating earth, known as geophagy has been common in many cultures across the world. Unfortunately, very little scientific research is being conducted in this area and its impact on human health.

 

 

The work decribed below has been published and can be accessed from the following link: http://www.ehjournal.net/content/9/1/79

The practice of deliberately eating earth, known as geophagy has been common in many cultures across the world.  It continues to be practiced today in many parts of the world including amongst certain groups within the United Kingdom.  The reason behind this practice remains unknown, although it has been suggested it is consumed for nutritional and medicinal purposes. Since geophagy is more prevalent during pregnancy, it has been suggested that eating earth may remedy deficiencies that results in anaemia in women.  However, others argue that eating earth may cause anaemia.   Unfortunately, very little scientific research is being conducted in this area and little is known about the composition of earth that is consumed in different parts of the world and their impact on human health.   The mineral content of the earth will naturally vary from region to region and the potential of exposure to toxic elements is likely.   This is a cause for concern especially in certain parts of the world where there are environmental problems resulting in the presence of elevated levels of toxic elements such as arsenic in water and the food chain.  Arsenic is a toxic element that is present at high levels in drinking water in Bangladesh and India.  Although many studies have focused on arsenic exposure in India (West Bengal) and Bangladesh through drinking water, very little work has been done to consider other sources of exposure.  Exposure to arsenic through consumption of rice and vegetables has been highlighted (Cascio et al. 2011 and references therein).  It was reported that the Bangladeshi's residing in the United Kingdom are exposed to a higher level of arsenic compared to white Caucasians (Cascio et al. 2011) due to their high intake of rice. 

Shaban Al-Rmalli is a PhD student (PhD supervisors:  Parvez Haris & Richard Jenkins, De Montfort University; Collaborator:  Michael Watts, British Geological Survey) at De Montfort and his research project was to identify the different sources of arsenic exposure in the Bangladeshi community not just from rice and vegetables.   The aim of the project is to identify sources of exposure to toxic elements that may explain the reasons underlying the disproportionately higher prevalence of different disease including diabetes, cardiovascular disease and some types of cancer amongst UK Bangladeshis (Cascio et al.  2010 & references therein).   Information obtained could be used to help modify the diet of the Bangladeshis (both in the UK and in Bangladesh) so that they avoid certain types of foods/non-foods that may contain high levels of toxic elements.  As part of his PhD project, Shaban analysed over 1,000 Bangladeshi food and non-food samples.  Amongst the samples he purchased from ethnic Bangladeshi shops in the United Kingdom was baked clay (imported from Bangladesh) that are called Sikor in Bengali (see Figure).   Discussions with the members of the Bangladeshi community and shop keepers revealed that these clay tablets are purchased mainly by Bangladeshi and African women and especially by pregnant women from these communities.  This revelation was rather alarming and further investigation into this issue revealed that in Bangladesh some women can consume as much as 500g of these clay tablets per day.   The average weight of the sikor tablets shown in the Figure is approximately 15g and most women consume between 3-4 tablets per day.  This is particularly worrying as intake of high levels of toxic elements could not only harm the health of the pregnant women but that of the unborn baby since many toxic elements including lead and arsenic can transfer from the mother to the baby through the placenta.  What was a cause for further worry is that women in Bangladesh are already being exposed to high levels of arsenic and manganese etc through drinking water and consumption of sikor may potentially lead to a further increase in exposure to these elements.   It was therefore vital that such samples are analysed to evaluate their content of arsenic as no previous studies have considered this issue.   

Sikor samples, originating from Bangladesh,  were purchased and analysed for their As, Pb, Cd, Mn, Fe and Zn levels using ICP-MS. Furthermore, detailed As speciation analysis was performed using HPLC-ICP-MS (http://www.ehjournal.net/content/9/1/79).   The levels of As (3.8-13.1 mg kg-1), Cd (0.09-0.4 mg kg-1) and Pb (21-26.7 mg kg-1) present in the sikor samples were of concern and could have detrimental effect on the health of the consumer. Speciation analysis revealed that sikor samples contained mainly the toxic inorganic As. It was calculated that modest consumption of 50 g of sikor is equivalent to ingesting 370 μg of As and 1235 μg of Pb per day, based on median concentration values. Just consuming 50g sikor per day exceeds the permitted maximum tolerable daily intake (PMTDI) of inorganic As by almost 2-fold (http://www.ehjournal.net/content/9/1/79).   The study concluded that sikor consumption can be a source of exposure to As, Cd and Pb in some Bangladeshis and in some other populations where this is consumed such as in India & Africa.   In the future, it is important to evaluate the bioavailability of As and other elements from sikor and their impact on human health.

The authors of the study recommend that those responsible for public health, act to create awareness about the potential dangers of consuming baked clay in populations where this practice is prevalent.  As a result, the United Kingdom Food Standards Agency has advised pregnant women not to eat baked clay (http://www.food.gov.uk/news/newsarchive/2011/june/clay ).  However, public health officials in other parts of the world including Bangladesh, India, Africa and other parts of the world where geophagy is more prevalent need to also act urgently to advise women about the potential dangers of eating clay.

For further details, please contact Dr P.I. Haris, E-Mail: pharis@dmu.ac.uk

References:

Al-Rmalli, S.W.,  Jenkins, R.O., Watts, M.J., and Haris, P.I. Risk of human exposure to arsenic and other toxic elements from geophagy: trace element analysis of baked clay using inductively coupled plasma mass spectrometry.  Environmental Health 2010, 9:79 (23 December 2010).

http://www.ehjournal.net/content/9/1/79

Cascio, C., Raab, A.,  Jenkins, R.O., Feldmann, J. Meharg, A.A. and Haris, P.I. (2011)  The impact of a rice based diet on urinary arsenic.  J. Environ. Monit., 2011, 13, 257-265.

Related reports 

Food Standards Agency issues warning about eating clay.

http://www.food.gov.uk/news/newsarchive/2011/june/clay

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18

    Abstract

    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.

  • Soil–plant system and potential human health risk of Chinese cabbage and oregano growing in soils from Mn- and Fe-abandoned mines: microcosm assay 2020-01-17

    Abstract

    In Portugal, many abandoned mines are often close to agricultural areas and might be used for plant food cultivation. Soils in the vicinity of two Mn- and Fe-abandoned mines (Ferragudo and Rosalgar, SW of Portugal) were collected to cultivate two different food species (Brassica rapa subsp. pekinensis (Lour.) Hanelt and Origanum vulgare L.). Chemical characterization of the soil–plant system and potential risk of adverse effects for human health posed by plants associated with soil contamination, based on the estimation of hazard quotient (HQ), were assessed in a microcosm assay under greenhouse conditions. In both soils, the average total concentrations of Fe and Mn were above the normal values for soils in the region and their concentration in shoots of both species was very high. Brassica rapa subsp. pekinensis grew better in Ferragudo than in Rosalgar soils, and it behaved as an excluder of Cu, Mn, Fe, S and Zn in both soils. The HQ for Cu, Fe, Mn and Zn in the studied species grown on both soils was lower than unit indicating that its consumption is safe. The high Mn tolerance found in both species might be due in part to the high contents of Fe in the soil available fraction that might contribute to an antagonism effect in the uptake and translocation of Mn. The obtained results emphasize the need of further studies with different food crops before cultivation in the studied soils to assess health risks associated with high metal intake.

  • Concentration, fractionation, and ecological risk assessment of heavy metals and phosphorus in surface sediments from lakes in N. Greece 2020-01-13

    Abstract

    The presence of phosphorus (P) and heavy metals (HMs) in surface sediments originating from lakes Volvi, Kerkini, and Doirani (N. Greece), as well as their fractionation patterns, were investigated. No statistically significant differences in total P content were observed among the studied lakes, but notable differences were observed among sampling periods. HM contents in all lakes presented a consistent trend, i.e., Mn > Cr > Zn > Pb > Ni > Cu > Cd, while the highest concentrations were recorded in Lake Kerkini. Most of the HMs exceeded probable effect level value indicating a probable biological effect, while Ni in many cases even exceeded threshold effects level, suggesting severe toxic effects. P was dominantly bound to metal oxides, while a significant shift toward the labile fractions was observed during the spring period. The sum of potentially bioavailable HM fractions followed a downward trend of Mn > Cr > Pb > Zn > Cu > Ni > Cd for most lakes. The geoaccumulation index Igeo values of Cr, Cu, Mn, Ni, and Zn in all lakes characterized the sediments as “unpolluted,” while many sediments in lakes Volvi and Kerkini were characterized as “moderately to heavily polluted” with regard to Cd. The descending order of potential ecological risk \(E_{\text{r}}^{i}\) was Cd > Pb > Cu > Ni > Cr > Zn > Mn for all the studied lakes. Ni and Cr presented the highest toxic risk index values in all lake sediments. Finally, the role of mineralogical divergences among lake sediments on the contamination degree was signified.