SEGH Articles

An historical reconstruction of atmospheric heavy metals deposition from a peat bog record on the North Shore of the St. Lawrence Estuary, Quebec

01 October 2013
Peat bogs were used to reconstruct the history of atmospheric heavy metal deposition along the St. Lawrence Valley. Results from one of the study sites were presented at the 29th SEGH held in July 2013, Toulouse.

Steve Pratte is currently a Ph.D. student at the Department of Earth and Atmospheric Sciences of Université du Québec à Montréal (UQAM, Canada) and the National Polytechnical Institute of Toulouse (INPT, France). The research presented at the 29th SEGH Conference in Toulouse won the Hemphill prize for best poster presentation in July.  The research was carried out during his Master’s degree in Earth and Planetary Sciences at McGill University in Montreal, under the supervision of Dr. Alfonso Mucci and Dr. Michelle Garneau.

Human activities, especially since the Industrial Revolution, have left a legacy of trace metal contamination that is potentially harmful for natural ecosystems and human health (e.g. As, Cd, Pb) and affected their geochemical cycles. Atmospheric metal pollution is recorded in different environmental archives such as lake and marine sediments, snow and ice and peat bogs. Among these archives, peat bogs have proven to be effective in reconstructing the history of atmospheric metal deposition throughout Europe, but few studies have been carried out in North America or in Quebec. Being an important natural wind corridor, oriented from south-west to north-east, the St. Lawrence Valley is affected by long-range transport of contaminants.

The present study focuses on the reconstruction of the history of atmospheric As, Cd, Ni, Pb and Zn deposition in surface cores (<100 cm) from three peat bogs along the St. Lawrence Valley (Fig.1). Core chronologies were established using 210Pb for the upper horizons and 14C dating for the deeper sections. Metal accumulation rates were computed from measured concentrations and core chronologies. Stable lead isotopes (204, 206, 207 and 208) were also analysed to distinguish natural and anthropogenic sources of Pb. Arsenic, cadmium, lead and stable lead isotopes results from one of the study sites (Baie bog) were presented at the 29th SEGH conference.

Metal accumulation rates (AR) and concentrations start increasing from the beginning to mid-19th century and increase more sharply from early 20th century. At the same time, Pb isotopic values diminish from 1850 AD probably from deposition of coal burning particle, and stabilise from the 1920’s likely due to contributions from leaded gasolines. Lead accumulations rates peak in 1951 AD, which is earlier than other studies undertaken in the region. Maximum Pb AR (24 mg m-2 yr-1) are in good agreement with other studies, while As and Cd AR are much lower than accumulation rates obtained in the southwestern part of the St. Lawrence Valley. This is likely explainable by the more remote location of the site which allow more particles to settle before reaching the site. This is also reflected in lead isotope values which fall closer to Canadian aerosols values, the site further away from the US Mid-west, receives proportionally more contributions from Canadian leaded gasolines. A sharp decrease in metal accumulation rates and concentrations from the mid-60’s and increase in Pb isotopic ratios from the mid-1970’s is observed, which reflect the phasing out of leaded gasoline and the implementation of other mitigation policies (i.e. Clean Air Act). However, values are still an order of magnitude higher than pre-industrial values and other less radiogenic sources of Pb must be invoked (likely coal consumption and smelting activities) to explain the recent decrease in isotopic values.

Study site locations

In short, the Baie bog recorded the main trends in industrial activities since the Industrial Revolution. The site receives more pollution from Canadian than US sources in reason of its greater distance from the main industrial and urban sources. Mitigation policies (phasing-out of leaded gasoline, Clean Air Act) have been effective in reducing metal emissions and deposition in the environment. Nevertheless, other sources than leaded gasolines are still contributing to Pb and other metal emissions.

Link to an article in Atmospheric Environment arising from this study.

http://www.sciencedirect.com/science/article/pii/S1352231013005943


Steve Pratte

Department of Earth and Atmospheric Sciences of Université du Québec à Montréal (UQAM, Canada) and the National Polytechnical Institute of Toulouse (INPT, France).

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh 2017-01-18

    Abstract

    Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.

  • Historical trends of organochlorine pesticides (OCPs) recorded in sediments across the Tibetan Plateau 2017-01-17

    Abstract

    Sediment cores from four lakes across the Tibetan Plateau were used as natural archives to study the time trends of organochlorine pesticides (OCPs). The total concentrations of dichlorodiphenyltrichloroethane (ΣDDT) and hexachlorocyclohexane isomers (ΣHCH) were in the range of 0.04–1.61 and 0.08–1.88 ng/g based on dry weight (dw), while the input fluxes were in the range of 0.3–236 and 0.7–295 pg/cm2/y in the core sediments, respectively. The input fluxes of ΣDDT and ΣHCH generally peaked in sediment layers corresponding to the 1970s–1990s and peaked in top sediment layers. The ratio of α/γ-HCH decreased in the top layer sediments, implying that the contribution of lindane (pure γ-HCH) has been increasing in recent years. In addition, the ratio of o,p′-DDT/p,p′-DDT increased significantly over the last 15–20 years, suggesting that dicofol (characterized by high ratio of o,p′-DDT/p,p′-DDT about 7.0) has recently become a relatively more important source of DDT compared to technical DDT itself. The time trends of OCPs recorded in lake sediments examined the impact on such remote alpine regions by human activities.

  • Estimation of the daily soil/dust (SD) ingestion rate of children from Gansu Province, China via hand-to-mouth contact using tracer elements 2016-12-19

    Abstract

    A total of 60 children (31 males and 29 females) between the ages of 3 and 12 years were randomly selected from Lanzhou City in Gansu Province, northwest China. Hand (soil/dust) SD samples from these children were collected using hand wipes. We determined the approximate amounts of hand SD and the concentrations of three tracer soil elements (Ce, Y, and V) in these samples. The approximate amounts of hand SD ranged from 42.28 to 173.76 mg, with a median value of 85.42 mg. In addition, the mean amounts of hand SD estimated using the concentrations of Ce, Y, and V in the samples were 4.63, 3.43, and 3.42 mg, respectively. The amount of hand SD varied greatly among the age groups: primary school children had more hand SD than kindergarten children, males had more hand SD than females, and children from rural areas had more hand SD than those from urban areas. The rates of daily ingestion of hand SD for kindergarten and primary school children were estimated to be 7.73 and 6.61 mg/day, respectively.