SEGH Articles

An historical reconstruction of atmospheric heavy metals deposition from a peat bog record on the North Shore of the St. Lawrence Estuary, Quebec

01 October 2013
Peat bogs were used to reconstruct the history of atmospheric heavy metal deposition along the St. Lawrence Valley. Results from one of the study sites were presented at the 29th SEGH held in July 2013, Toulouse.

Steve Pratte is currently a Ph.D. student at the Department of Earth and Atmospheric Sciences of Université du Québec à Montréal (UQAM, Canada) and the National Polytechnical Institute of Toulouse (INPT, France). The research presented at the 29th SEGH Conference in Toulouse won the Hemphill prize for best poster presentation in July.  The research was carried out during his Master’s degree in Earth and Planetary Sciences at McGill University in Montreal, under the supervision of Dr. Alfonso Mucci and Dr. Michelle Garneau.

Human activities, especially since the Industrial Revolution, have left a legacy of trace metal contamination that is potentially harmful for natural ecosystems and human health (e.g. As, Cd, Pb) and affected their geochemical cycles. Atmospheric metal pollution is recorded in different environmental archives such as lake and marine sediments, snow and ice and peat bogs. Among these archives, peat bogs have proven to be effective in reconstructing the history of atmospheric metal deposition throughout Europe, but few studies have been carried out in North America or in Quebec. Being an important natural wind corridor, oriented from south-west to north-east, the St. Lawrence Valley is affected by long-range transport of contaminants.

The present study focuses on the reconstruction of the history of atmospheric As, Cd, Ni, Pb and Zn deposition in surface cores (<100 cm) from three peat bogs along the St. Lawrence Valley (Fig.1). Core chronologies were established using 210Pb for the upper horizons and 14C dating for the deeper sections. Metal accumulation rates were computed from measured concentrations and core chronologies. Stable lead isotopes (204, 206, 207 and 208) were also analysed to distinguish natural and anthropogenic sources of Pb. Arsenic, cadmium, lead and stable lead isotopes results from one of the study sites (Baie bog) were presented at the 29th SEGH conference.

Metal accumulation rates (AR) and concentrations start increasing from the beginning to mid-19th century and increase more sharply from early 20th century. At the same time, Pb isotopic values diminish from 1850 AD probably from deposition of coal burning particle, and stabilise from the 1920’s likely due to contributions from leaded gasolines. Lead accumulations rates peak in 1951 AD, which is earlier than other studies undertaken in the region. Maximum Pb AR (24 mg m-2 yr-1) are in good agreement with other studies, while As and Cd AR are much lower than accumulation rates obtained in the southwestern part of the St. Lawrence Valley. This is likely explainable by the more remote location of the site which allow more particles to settle before reaching the site. This is also reflected in lead isotope values which fall closer to Canadian aerosols values, the site further away from the US Mid-west, receives proportionally more contributions from Canadian leaded gasolines. A sharp decrease in metal accumulation rates and concentrations from the mid-60’s and increase in Pb isotopic ratios from the mid-1970’s is observed, which reflect the phasing out of leaded gasoline and the implementation of other mitigation policies (i.e. Clean Air Act). However, values are still an order of magnitude higher than pre-industrial values and other less radiogenic sources of Pb must be invoked (likely coal consumption and smelting activities) to explain the recent decrease in isotopic values.

Study site locations

In short, the Baie bog recorded the main trends in industrial activities since the Industrial Revolution. The site receives more pollution from Canadian than US sources in reason of its greater distance from the main industrial and urban sources. Mitigation policies (phasing-out of leaded gasoline, Clean Air Act) have been effective in reducing metal emissions and deposition in the environment. Nevertheless, other sources than leaded gasolines are still contributing to Pb and other metal emissions.

Link to an article in Atmospheric Environment arising from this study.

Steve Pratte

Department of Earth and Atmospheric Sciences of Université du Québec à Montréal (UQAM, Canada) and the National Polytechnical Institute of Toulouse (INPT, France).

Keep up to date

SEGH Events

SEGH 2015 31st International Conference


22 June 2015

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Chronic kidney disease of unknown aetiology and ground-water ionicity: study based on Sri Lanka 2014-08-14


    High incidence of chronic kidney disease of unknown aetiology (CKDU) in Sri Lanka is shown to correlate with the presence of irrigation works and rivers that bring-in ‘nonpoint source’ fertilizer runoff from intensely agricultural regions. We review previous attempts to link CKDU with As, Cd and other standard toxins. Those studies (e.g. the WHO-sponsored study), while providing a wealth of data, are inconclusive in regard to aetiology. Here, we present new proposals based on increased ionicity of drinking water due to fertilizer runoff into the river system, redox processes in the soil and features of ‘tank’-cascades and aquifers. The consequent chronic exposure to high ionicity in drinking water is proposed to debilitate the kidney via a Hofmeister-type (i.e. protein-denaturing) mechanism.

  • Seasonal variation and source apportionment of organic tracers in PM10 in Chengdu, China 2014-08-14


    Organic compound tracers including n-alkanes, triterpane, sterane, polycyclic aromatic hydrocarbons (PAHs) and dicarboxylic acids of airborne particulate matter (PM10) were characterized for samples collected at five sites from July 2010 to March 2011 using GC/MS. Spatial and temporal variations of these organic tracers in PM10 were studied, and their sources were then identified respectively. Average daily concentrations of PM10 varied in different seasons with the trend of PM10 in winter (0.133 mg/m3) > autumn (0.120 mg/m3) > spring (0.103 mg/m3) > summer (0.098 mg/m3). Daily concentrations of n-alkanes (C11–C36) ranged from 12.11 to 163.58 ng/m3 with a mean of 61.99 ng/m3. The C max and CPI index of n-alkanes indicated that vehicle emissions were the major source in winter, while the contributions of high plant wax emissions became significant in other seasons. It was discovered that the main sources of triterpenoid and steranes were gasoline and diesel engine emissions. Concentrations of ∑15PAHs in PM10 also varied (12.25–58.56 ng/m3) in different seasons, and chrysene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi) perylene and fluoranthene were the dominant components. In the four seasons, the concentration of ∑15PAHs was relatively higher at the northern site because of traffic congestion. The main source of airborne PAHs was traffic emissions and coal combustion. Average daily concentrations of dicarboxylic acids (C4–C10) in PM10 ranged from 12.11 to 163.58 ng/m3, of which azeleic acid was the major compound (0.49–52.04 ng/m3, average 14.93 ng/m3), followed by succinic acid (0.56–19.08 ng/m3, average 6.84 ng/m3). The ratio of C6/C9 showed that the major source in winter was biological, while the contributions of emissions from anthropogenic activities were much higher in summer.

  • Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China 2014-08-13


    Occurrence of five estrogens, including estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2) and bisphenol A (BPA) in water, sediment and biota in Northern Taihu Lake, were investigated and their ecological risk was evaluated. Most of the target estrogens were widely distributed in the eight studied sampling sites, and their levels showed a regional trend of Gong Bay > Meiliang Bay > Zhushan Bay. The average concentrations of E1, E2, E3, EE2 and BPA ranged from 3.86 to 64.4 ng l−1, 44.3 to 64.1 μg kg−1 dry weight and 58.6 to 115 μg kg−1 dry weight in water, sediments and biota, respectively. In most cases, the average concentrations of BPA and E2 were higher than those of other estrogens. E1, E3 and EE2 were found to be accumulated in river snails with bioaccumulation factor values as high as 14,204, 35,327 and 20,127 l kg−1, respectively. E3 was also considered to be accumulated in clams. The evaluation of environmental risk showed that the occurrence of E2 and EE2 in lakes might pose a high risk to aquatic organisms. These findings provide important information for estrogen control and management in the studied area.