SEGH Articles

An historical reconstruction of atmospheric heavy metals deposition from a peat bog record on the North Shore of the St. Lawrence Estuary, Quebec

01 October 2013
Peat bogs were used to reconstruct the history of atmospheric heavy metal deposition along the St. Lawrence Valley. Results from one of the study sites were presented at the 29th SEGH held in July 2013, Toulouse.

Steve Pratte is currently a Ph.D. student at the Department of Earth and Atmospheric Sciences of Université du Québec à Montréal (UQAM, Canada) and the National Polytechnical Institute of Toulouse (INPT, France). The research presented at the 29th SEGH Conference in Toulouse won the Hemphill prize for best poster presentation in July.  The research was carried out during his Master’s degree in Earth and Planetary Sciences at McGill University in Montreal, under the supervision of Dr. Alfonso Mucci and Dr. Michelle Garneau.

Human activities, especially since the Industrial Revolution, have left a legacy of trace metal contamination that is potentially harmful for natural ecosystems and human health (e.g. As, Cd, Pb) and affected their geochemical cycles. Atmospheric metal pollution is recorded in different environmental archives such as lake and marine sediments, snow and ice and peat bogs. Among these archives, peat bogs have proven to be effective in reconstructing the history of atmospheric metal deposition throughout Europe, but few studies have been carried out in North America or in Quebec. Being an important natural wind corridor, oriented from south-west to north-east, the St. Lawrence Valley is affected by long-range transport of contaminants.

The present study focuses on the reconstruction of the history of atmospheric As, Cd, Ni, Pb and Zn deposition in surface cores (<100 cm) from three peat bogs along the St. Lawrence Valley (Fig.1). Core chronologies were established using 210Pb for the upper horizons and 14C dating for the deeper sections. Metal accumulation rates were computed from measured concentrations and core chronologies. Stable lead isotopes (204, 206, 207 and 208) were also analysed to distinguish natural and anthropogenic sources of Pb. Arsenic, cadmium, lead and stable lead isotopes results from one of the study sites (Baie bog) were presented at the 29th SEGH conference.

Metal accumulation rates (AR) and concentrations start increasing from the beginning to mid-19th century and increase more sharply from early 20th century. At the same time, Pb isotopic values diminish from 1850 AD probably from deposition of coal burning particle, and stabilise from the 1920’s likely due to contributions from leaded gasolines. Lead accumulations rates peak in 1951 AD, which is earlier than other studies undertaken in the region. Maximum Pb AR (24 mg m-2 yr-1) are in good agreement with other studies, while As and Cd AR are much lower than accumulation rates obtained in the southwestern part of the St. Lawrence Valley. This is likely explainable by the more remote location of the site which allow more particles to settle before reaching the site. This is also reflected in lead isotope values which fall closer to Canadian aerosols values, the site further away from the US Mid-west, receives proportionally more contributions from Canadian leaded gasolines. A sharp decrease in metal accumulation rates and concentrations from the mid-60’s and increase in Pb isotopic ratios from the mid-1970’s is observed, which reflect the phasing out of leaded gasoline and the implementation of other mitigation policies (i.e. Clean Air Act). However, values are still an order of magnitude higher than pre-industrial values and other less radiogenic sources of Pb must be invoked (likely coal consumption and smelting activities) to explain the recent decrease in isotopic values.

Study site locations

In short, the Baie bog recorded the main trends in industrial activities since the Industrial Revolution. The site receives more pollution from Canadian than US sources in reason of its greater distance from the main industrial and urban sources. Mitigation policies (phasing-out of leaded gasoline, Clean Air Act) have been effective in reducing metal emissions and deposition in the environment. Nevertheless, other sources than leaded gasolines are still contributing to Pb and other metal emissions.

Link to an article in Atmospheric Environment arising from this study.

Steve Pratte

Department of Earth and Atmospheric Sciences of Université du Québec à Montréal (UQAM, Canada) and the National Polytechnical Institute of Toulouse (INPT, France).

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Seeking evidence of multidisciplinarity in environmental geochemistry and health: an analysis of arsenic in drinking water research 2017-02-24


    A multidisciplinary approach to research affords the opportunity of objectivity, creation of new knowledge and potentially a more generally acceptable solution to problems that informed the research in the first place. It increasingly features in national programmes supporting basic and applied research, but for over 40 years, has been the arena for many research teams in environmental geochemistry and health. This study explores the nature of multidisciplinary research in the earth and health sciences using a sample selected from co-authored articles reporting research on arsenic (As) in drinking water from 1979 to 2013. A total of 889 relevant articles were sourced using the online version of the science citation index—expanded (SCI-expanded). The articles were classified according to author affiliation and later by author discipline/research interests using the Revised Field of Science and Technology Frascati manual DSTI/EAS/STP/NESTI (2006) 19/FINAL and a decision algorithm. Few articles were published on the topic until 2000. More articles were published across all affiliations in the last 10 years of the review period (2004–2013) than in the first 10 years (1979–1988). Only 84 (~9%) articles fell within the “earth and health” only and “earth, health and other” categories when classification was undertaken by author affiliation alone. This suggests that level of collaboration between earth and health scientists in arsenic in drinking water research may be very low. By refining the classification further using author discipline/research interests, only 28 of the 84 articles appear to be co-authored by earth and health scientists alongside professionals in other fields. More than half of these 28 articles involved descriptive non-experimental, observational study designs, limited in direct causal hypotheses and mechanistic investigation. If collaborative research is to lead to the increased multidisciplinary research, early interaction should be encouraged between students from different disciplines. In order to achieve multidisciplinarity in practise, it is imperative that scientific communities and research agencies do more to encourage interaction and integration between researchers from different disciplines. This must develop from educational institutions seeing opportunities to improve graduate skills in an increasingly diverse research landscape.

  • The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China 2017-02-23


    Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water–rock–hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water–rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T2g3) and upper of Yongningzhen formation (T1yn4). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.

  • Potential ecological risk assessment and predicting zinc accumulation in soils 2017-02-22


    The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil–zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg−1 d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining–metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran’s correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg−1 d.m. (0.01 mol dm−3 CaCl2), and between 0.03 and 71.54 mg kg−1 d.m. (1 mol dm−3 NH4NO3). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90% of the soils there were no potentially negative effects of zinc to ecological receptors.