SEGH Articles

An historical reconstruction of atmospheric heavy metals deposition from a peat bog record on the North Shore of the St. Lawrence Estuary, Quebec

01 October 2013
Peat bogs were used to reconstruct the history of atmospheric heavy metal deposition along the St. Lawrence Valley. Results from one of the study sites were presented at the 29th SEGH held in July 2013, Toulouse.

Steve Pratte is currently a Ph.D. student at the Department of Earth and Atmospheric Sciences of Université du Québec à Montréal (UQAM, Canada) and the National Polytechnical Institute of Toulouse (INPT, France). The research presented at the 29th SEGH Conference in Toulouse won the Hemphill prize for best poster presentation in July.  The research was carried out during his Master’s degree in Earth and Planetary Sciences at McGill University in Montreal, under the supervision of Dr. Alfonso Mucci and Dr. Michelle Garneau.

Human activities, especially since the Industrial Revolution, have left a legacy of trace metal contamination that is potentially harmful for natural ecosystems and human health (e.g. As, Cd, Pb) and affected their geochemical cycles. Atmospheric metal pollution is recorded in different environmental archives such as lake and marine sediments, snow and ice and peat bogs. Among these archives, peat bogs have proven to be effective in reconstructing the history of atmospheric metal deposition throughout Europe, but few studies have been carried out in North America or in Quebec. Being an important natural wind corridor, oriented from south-west to north-east, the St. Lawrence Valley is affected by long-range transport of contaminants.

The present study focuses on the reconstruction of the history of atmospheric As, Cd, Ni, Pb and Zn deposition in surface cores (<100 cm) from three peat bogs along the St. Lawrence Valley (Fig.1). Core chronologies were established using 210Pb for the upper horizons and 14C dating for the deeper sections. Metal accumulation rates were computed from measured concentrations and core chronologies. Stable lead isotopes (204, 206, 207 and 208) were also analysed to distinguish natural and anthropogenic sources of Pb. Arsenic, cadmium, lead and stable lead isotopes results from one of the study sites (Baie bog) were presented at the 29th SEGH conference.

Metal accumulation rates (AR) and concentrations start increasing from the beginning to mid-19th century and increase more sharply from early 20th century. At the same time, Pb isotopic values diminish from 1850 AD probably from deposition of coal burning particle, and stabilise from the 1920’s likely due to contributions from leaded gasolines. Lead accumulations rates peak in 1951 AD, which is earlier than other studies undertaken in the region. Maximum Pb AR (24 mg m-2 yr-1) are in good agreement with other studies, while As and Cd AR are much lower than accumulation rates obtained in the southwestern part of the St. Lawrence Valley. This is likely explainable by the more remote location of the site which allow more particles to settle before reaching the site. This is also reflected in lead isotope values which fall closer to Canadian aerosols values, the site further away from the US Mid-west, receives proportionally more contributions from Canadian leaded gasolines. A sharp decrease in metal accumulation rates and concentrations from the mid-60’s and increase in Pb isotopic ratios from the mid-1970’s is observed, which reflect the phasing out of leaded gasoline and the implementation of other mitigation policies (i.e. Clean Air Act). However, values are still an order of magnitude higher than pre-industrial values and other less radiogenic sources of Pb must be invoked (likely coal consumption and smelting activities) to explain the recent decrease in isotopic values.

Study site locations

In short, the Baie bog recorded the main trends in industrial activities since the Industrial Revolution. The site receives more pollution from Canadian than US sources in reason of its greater distance from the main industrial and urban sources. Mitigation policies (phasing-out of leaded gasoline, Clean Air Act) have been effective in reducing metal emissions and deposition in the environment. Nevertheless, other sources than leaded gasolines are still contributing to Pb and other metal emissions.

Link to an article in Atmospheric Environment arising from this study.

http://www.sciencedirect.com/science/article/pii/S1352231013005943


Steve Pratte

Department of Earth and Atmospheric Sciences of Université du Québec à Montréal (UQAM, Canada) and the National Polytechnical Institute of Toulouse (INPT, France).

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characterization and speciation of mercury in mosses and lichens from the high-altitude Tibetan Plateau 2016-05-03

    Abstract

    The accumulation and species of mercury (Hg) in mosses and lichens collected from high-altitude Tibetan Plateau were studied. The altitudes of the sampling sites spanned from 1983 to 5147 m, and a total of 130 mosses and 52 lichens were analyzed. The total mercury (THg) contents in mosses and lichens were in the ranges of 13.1–273.0 and 20.2–345.9 ng/g, respectively. The average ratios of methylmercury (MeHg) in THg in mosses and lichens were 2.4 % (0.3–11.1 %) and 2.7 % (0.4–9.6 %), respectively, which were higher than those values reported in other regions. The contents of THg in both mosses and lichens were not correlated with the THg in soils (p > 0.05). The lipid contents displayed a significantly positive correlation with concentrations of MeHg in mosses (r = 0.461, p < 0.01, n = 90), but not in lichens. The correlations between Hg contents in mosses and the altitudes, latitudes and longitudes of sampling sites indicated the mountain trapping and spatial deposition of Hg in the Tibetan Plateau.

  • Assessment of potentially harmful elements pollution in the Calore River basin (Southern Italy) 2016-05-03

    Abstract

    The geographical distribution of concentration values for harmful elements was determined in the Campania region, Italy. The study area consists of the drainage basin of the River Calore, a tributary of the river Volturno, the largest Southern Italian river. The results provide reliable analytical data allowing a quantitative assessment of the trace element pollution threat to the ecosystem and human health. Altogether 562 stream sediment samples were collected at a sampling density of 1 site per 5 km2. All samples were air-dried, sieved to <100 mesh fraction and analyzed for 37 elements after an aqua regia extraction by a combination of ICP-AES and ICP-MS. In addition to elemental analysis, gamma-ray spectrometry data were collected (a total of 562 measurements) using a hand-held Scintrex GRS-500 spectrometer. Statistical analyses were performed to show the single-element distribution and the distribution of elemental association factor scores resulting from R-mode factor analyses. Maps showing element distributions were made using GeoDAS and ArcGIS software. Our study showed that, despite evidence from concentrations of many elements for enrichment over natural background values, the spatial distribution of major and trace elements in Calore River basin is determined mostly by geogenic factors. The southwestern area of the basin highlighted an enrichment of many elements potentially harmful for human health and other living organisms (Al, Fe, K, Na, As, Cd, La, Pb, Th, Tl, U); however, these anomalies are due to the presence of pyroclastic and alkaline volcanic lithologies. Even where sedimentary lithologies occur, many harmful elements (Co, Cr, Mn, Ni) showed high concentration levels due to natural origins. Conversely, a strong heavy metal contamination (Pb, Zn, Cu, Sb, Ag, Au, Hg), due to an anthropogenic contribution, is highlighted in many areas characterized by the presence of road junctions, urban settlements and industrial areas. The enrichment factor of these elements is 3–4 times higher than the background values. The southwestern area of the basin is characterized by a moderate/high degree of contamination, just where the two busiest roads of the area run and the highest concentration of industries occurs.

  • Physicochemical fingerprinting of thermal waters of Beira Interior region of Portugal 2016-05-03

    Abstract

    Mineral natural waters and spas have been used for therapeutic purposes for centuries, with Portugal being a very rich country in thermal waters and spas that are mainly distributed by northern and central regions where Beira Interior region is located. The use of thermal waters for therapeutic purposes has always been aroused a continuous interest, being dependent on physicochemical fingerprinting of this type of waters the indication for a treatment in a specific pathological condition. In the present work, besides a literature review about the physicochemical composition of the thermal waters of the Beira Interior region and its therapeutic indications, it was carried out an exhaustive multivariate analysis—principal component analysis and cluster analysis—to assess the correlation between different physicochemical parameters and the therapeutic indications claims described for these spas and thermal waters. These statistical methods used for data analysis enables classification of thermal waters compositions into different groups, regarding to the different variable selected, making possible an interpretation of variables affecting water compositions. Actually, Monfortinho and Longroiva are clearly quite different of the others, and Cró and Fonte Santa de Almeida appear together in all analysis, suggesting a strong resemblance between these waters. Thereafter, the results obtained allow us to demonstrate the role of major components of the studied thermal waters on a particular therapeutic purpose/indication and hence based on compositional and physicochemical properties partially explain their therapeutic qualities and beneficial effects on human health. This classification agreed with the results obtained for the therapeutic indications approved by the Portuguese National Health Authority and proved to be a valuable tool for the regional typology of mineral medicinal waters, constituting an important guide of the therapeutic armamentarium for well and specific-oriented pathological disturbs.