SEGH Articles

A pre-mining survey to establish the geochemical baseline in stream water and sediment of a mineralised area in north Greece

02 March 2012


One of the lessons learnt by the legacy of mining is that involvement of environmental scientists in the initial planning stages, in geochemistry baseline studies is significant for setting up realistic goals for monitoring and remediation programs.

A recent PhD project in the Department of Economic Geology and Geochemistry at the University of Athens, Greece investigated the geochemical characteristics of surface water and stream sediments of Asprolakkas drainage basin, an area of sulphide mineralization within metamorphic rocks, located in Chalkidiki peninsula, north Greece. One of the research objectives was to establish the geochemical baseline conditions prior to any type of new mining activity. The area represents the only example of active mining and processing of base metal sulphide ore in Greece and also includes an unmined porphyry Cu-Au ore deposit that will be exploited in the near future. In a wider context, this research represents a pre-mining baseline geochemical study that can be used as an analogue for similar metallogenetic provinces in areas with a Mediterranean type climate. The deposits of the area have a long exploitation history that started in 600 BC and continues until today, mainly because of their Au potential. It is believed that the mining activity in Chalkidiki during ancient times was the major source of gold during the era of Fillip II and Alexander the Great.

Concentrations of dissolved major ions and trace metals displayed wide variability within the study area. Kokkinolakkas, the stream draining the exploited Pb-Zn (±Ag) ore bodies, is strongly influenced by chemical weathering of sulphide minerals and presents elevated levels of SO4, Pb, Zn, Mn, Ni, Cd, As and Sb. Stream water of the unmined areas demonstrated a different chemical composition with elevated values mainly for Pb and As. It was found that hydrological conditions are important in modeling the element concentrations in water under present conditions. Major ion content decreases in the wet period as a result of dilution owing to the heavy winter rainfall. A contrasting behavior was observed for heavy metal composition in Kokkinolakkas water samples, due to the enhanced base metal dissolution under high run off conditions. It appears that downstream dispersion of metals is favoured by transport via adsorption processes onto very fine particles (< 0.45 μm). The study also revealed that weathering of the mineral deposits supports the occurrence of a prevalent Fe-Mn oxyhydroxide surface, which is considered to be capable of scavenging toxic metals. However, these precipitates could be a secondary source of trace metals for the water column upon dissolution of the oxides under reduced conditions. Cadmium is the only labile metal indicating the different chemical binding, and higher solubility of this element, compared to the other heavy metals. High actual concentrations were also measured in the carbonate fraction of Kokkinolakkas stream sediment samples, highlighting that pH is the principal variable governing the potential release of these elements to the dissolved phase.

Bearing in mind the ongoing mining developments in the area, results of this study are very significant, providing scientific data about the present environmental-geochemical baseline conditions of the drainage basin and are available for any future comparison. These data can enable mine planners to better anticipate and plan for potential environmental impacts and are useful for setting up realistic goals in monitoring and remediation programs.

Dr Ariadne Argyraki, Assistant Professor in Geochemistry, National and Kapodistrian University of Athens. E-mail: 

 Stream water sampling in Chalkidiki, Greece.


Kelepertzis, E., Argyraki, A., Daftsis, E (2012). Geochemical signature of surface water and stream sediments of a mineralized drainage basin at NE Chalkidiki, Greece: A pre-mining survey, Journal of Geochemical Exploration, 114, 70-81. (doi:10.1016/j.gexplo.2011.12.006)

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23


    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23


    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18


    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.