SEGH Articles

2012 PBC-SEGH Joint Symposium on Environmental and Public Health Sciences

01 March 2013
2012 PBC-SEGH Joint Symposium on Environmental and Public Health perspectives: a brief description of abstracts is given.

The 2012 PBC (Pacific Basin Consortium for Environment and Health)-SEGH Joint Symposium was successfully held at the Gwangju Institute of Science and Technology (GIST) in Korea on 10-12 April 2012. This jointly ventured symposium was hosted by Professor Kyoung-Woong Kim (Member of SEGH Executive Board) and brought a new audience to the SEGH. It gave our members an opportunity to exchange ideas on new interesting perspectives, such as environmental and public health sciences. The selected articles were published in a special issue of ‘Reviews on Environmental Health’ from the symposiumA Brief description is given for each abstract, follow the link to read more.

Special issue: The 14th International Conference of the Pacific Basin Consortium for Environment and Health

Special vulnerability of children to environmental exposures

Sly, J. Leith / Carpenter, David O.

The environment in which fetal and childhood development occurs is very important. Unfortunately, poverty is a major risk factor for both exposures and childhood and later-life disease resulting from exposures to both environmental chemicals and infectious agents.

Improving access to adequate water and basic sanitation services in Indonesia

Haryanto, Budi / Sutomo, Sumengen

The development of water and basic sanitation services in Indonesia does not indicate any significant progress in the last two decades. The prevalence of water-borne diseases tends to increase yearly, which poses a risk for a population of over a million people. Therefore, it is not realistic to achieve the Millennium Development Goals target by 2015. Redefining approaches like providing integrated programs and action in water and sanitation services must be a priority to protect human health in Indonesia.

A framework for assessing and predicting the environmental health impact of infectious diseases: a case study of leptospirosis

Lau, Colleen / Jagals, Paul

The application of an integrated environmental health impact assessment (IEHIA) methodology to assess the health impact of an infectious disease was shown to enhance the ability to quantify associations between a disease agent and its health impact by taking into account the environmental drivers of transmission, human behaviour, socioeconomic factors, and the multiple pathways through which exposure and infection could occur.

Nanoparticles in the environment: stability and toxicity

Kim, Hyun-A / Choi, Yoo Jin / Kim, Kyoung-Woong / Lee, Byung-Tae / Ranville, James F.

This review presents a brief overview of the fate, behavior, and ecotoxicity of nanoparticles (NPs) in the environment. The fate and transport of NPs, which can be affected by various environmental conditions like light, pH, ionic strength, and type and concentration of cations, are important for the examination of the life cycle of NPs.

Nature’s cure for cleanup of contaminated environment – a review of bioremediation strategies

Prasad, Majeti Narasimha Vara / Prasad, Rajendra

Bioremediation technologies resting upon the vast potential of biodiversity for the monitoring and abatement of environmental pollution have been briefly reviewed.

Arsenic and human health: epidemiologic progress and public health implications

Argos, Maria / Ahsan, Habibul / Graziano, Joseph H.

Herein, we emphasize the role of recent genetic and molecular epidemiologic investigations of arsenic toxicity. Additionally, we discuss considerations for the public health impacts of arsenic exposure through drinking water with respect to primary and secondary prevention efforts.

Direct potable reuse of reclaimed wastewater: it is time for a rational discussion

Arnold, Robert G. / Sáez, Avelino E. / Snyder, Shane / Maeng, Sung Kyu / Lee, Changha / Woods, Gwendolyn J. / Li, Xiangdong / Choi, Heechul

Engineered solutions to relieve water stress are frequently based on the use of water of impaired initial quality. Chief among these impaired waters is reclaimed wastewater. For the most part, however, the breadth of both acceptable uses and use-dependent degree of treatment for reclaimed wastewater remain to be established.

Persistent toxic substances: sources, fates and effects

Wong, Ming H. / Armour, Margaret-Ann / Naidu, Ravi / Man, Ming

This article is an attempt to review the current status of Persistently Toxic Substances (PTS) in our environment, citing case studies in China and North America, and whether our existing drinking water treatment and wastewater treatment processes are adequate in removing them from water. Some management issues of these emerging chemicals of concern are also discussed.


Dr Michael Watts, SEGH Webmaster

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment 2017-08-17


    Dye-based industries, particularly small and medium scale, discharge their effluents into waterways without treatment due to cost considerations. We investigated the use of biochars produced from the woody tree Gliricidia sepium at 300 °C (GBC300) and 500 °C (GBC500) in the laboratory and at 700 °C from a dendro bioenergy industry (GBC700), to evaluate their potential for sorption of crystal violet (CV) dye. Experiments were conducted to assess the effect of pH reaction time and CV loading on the adsorption process. The equilibrium adsorption capacity was higher with GBC700 (7.9 mg g−1) than GBC500 (4.9 mg g−1) and GBC300 (4.4 mg g−1), at pH 8. The CV sorption process was dependent on the pH, surface area and pore volume of biochar (GBC). Both Freundlich and Hill isotherm models fitted best to the equilibrium isotherm data suggesting cooperative interactions via physisorption and chemisorption mechanisms for CV sorption. The highest Hill sorption capacity of 125.5 mg g−1 was given by GBC700 at pH 8. Kinetic data followed the pseudo-second-order model, suggesting that the sorption process is more inclined toward the chemisorption mechanism. Pore diffusion, ππ electron donor–acceptor interaction and H-bonding were postulated to be involved in physisorption, whereas electrostatic interactions of protonated amine group of CV and negatively charged GBC surface led to a chemisorption type of adsorption. Overall, GBC produced as a by-product of the dendro industry could be a promising remedy for CV removal from an aqueous environment.

  • Concentrations, input prediction and probabilistic biological risk assessment of polycyclic aromatic hydrocarbons (PAHs) along Gujarat coastline 2017-08-11


    A comprehensive investigation was conducted in order to assess the levels of PAHs, their input prediction and potential risks to bacterial abundance and human health along Gujarat coastline. A total of 40 sediment samples were collected at quarterly intervals within a year from two contaminated sites—Alang-Sosiya Shipbreaking Yard (ASSBRY) and Navlakhi Port (NAV), situated at Gulf of Khambhat and Gulf of Kutch, respectively. The concentration of ΣPAHs ranged from 408.00 to 54240.45 ng g−1 dw, indicating heavy pollution of PAHs at both the contaminated sites. Furthermore, isomeric ratios and principal component analysis have revealed that inputs of PAHs at both contaminated sites were mixed-pyrogenic and petrogenic. Pearson co-relation test and regression analysis have disclosed Nap, Acel and Phe as major predictors for bacterial abundance at both contaminated sites. Significantly, cancer risk assessment of the PAHs has been exercised based on incremental lifetime cancer risks. Overall, index of cancer risk of PAHs for ASSBRY and NAV ranged from 4.11 × 10−6–2.11 × 10−5 and 9.08 × 10−6–4.50 × 10−3 indicating higher cancer risk at NAV compared to ASSBRY. The present findings provide baseline information that may help in developing advanced bioremediation and bioleaching strategies to minimize biological risk.

  • Error propagation in spatial modeling of public health data: a simulation approach using pediatric blood lead level data for Syracuse, New York 2017-08-08


    Lead poisoning produces serious health problems, which are worse when a victim is younger. The US government and society have tried to prevent lead poisoning, especially since the 1970s; however, lead exposure remains prevalent. Lead poisoning analyses frequently use georeferenced blood lead level data. Like other types of data, these spatial data may contain uncertainties, such as location and attribute measurement errors, which can propagate to analysis results. For this paper, simulation experiments are employed to investigate how selected uncertainties impact regression analyses of blood lead level data in Syracuse, New York. In these simulations, location error and attribute measurement error, as well as a combination of these two errors, are embedded into the original data, and then these data are aggregated into census block group and census tract polygons. These aggregated data are analyzed with regression techniques, and comparisons are reported between the regression coefficients and their standard errors for the error added simulation results and the original results. To account for spatial autocorrelation, the eigenvector spatial filtering method and spatial autoregressive specifications are utilized with linear and generalized linear models. Our findings confirm that location error has more of an impact on the differences than does attribute measurement error, and show that the combined error leads to the greatest deviations. Location error simulation results show that smaller administrative units experience more of a location error impact, and, interestingly, coefficients and standard errors deviate more from their true values for a variable with a low level of spatial autocorrelation. These results imply that uncertainty, especially location error, has a considerable impact on the reliability of spatial analysis results for public health data, and that the level of spatial autocorrelation in a variable also has an impact on modeling results.