About

Diverse scientific fields and multidisciplinary expertise brought together within an international community

About SEGH

 

SEGH was established in 1971 to provide a forum for scientists from various disciplines to work together in understanding the interaction between the geochemical environment and the health of plants, animals, and humans.

SEGH recognizes the importance of interdisciplinary research, representing expertise in a diverse range of scientific fields, such as biology, engineering, geology, hydrology, epidemiology, chemistry, medicine, nutrition, and toxicology.

SEGH members come from a variety of backgrounds within the academic, regulatory, and industrial communities, thus providing a representative perspective on current issues and concerns.

SEGH membership is international and there are regional sections to coordinate activities in Europe, Americas and Asia/ Pacific.

 

 

 

Organisational Profile

 

President and Regional Chairs: President Dr Chaosheng Zhang

President European Chair Americas Chair Asia/Pacific Chair
Dr Chaosheng Zhang Dr Chaosheng Zhang Dr. Nurdan S. Duzgoren-Aydin, Prof. Kyoung-Woong Kim
University of Galway University of Galway

New Jersey City

University

 
Korea
chaosheng.zhang@nuigalway.ie     kwkim@gist.ac.kr



China-Ireland Consortium: Taicheng An (China), Yongguan Zhu (China) , Chaosheng Zhang (NUI Galway, Ireland)”

 

Organisational roles

Membership Secretary / Treasurer Secretary Webmaster
Mrs Anthea Brown Mr Malcolm Brown Dr Michael Watts
Rt. British Geological Survey Rt. British Geological Survey British Geological Survey
seghmembership@gmail.com segh.secretary@gmail.com seghwebmaster@gmail.com

 

SEGH is a member of the Geological Society of America's Associated Society Partnerships.  For more information on educational programmes, collaborations and communications link to www.geosociety.org.

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • A review of the public health impacts of unconventional natural gas development 2016-12-05

    Abstract

    The public health impact of hydraulic fracturing remains a high profile and controversial issue. While there has been a recent surge of published papers, it remains an under-researched area despite being possibly the most substantive change in energy production since the advent of the fossil fuel economy. We review the evidence of effects in five public health domains with a particular focus on the UK: exposure, health, socio-economic, climate change and seismicity. While the latter would seem not to be of significance for the UK, we conclude that serious gaps in our understanding of the other potential impacts persist together with some concerning signals in the literature and legitimate uncertainties derived from first principles. There is a fundamental requirement for high-quality epidemiological research incorporating real exposure measures, improved understanding of methane leakage throughout the process, and a rigorous analysis of the UK social and economic impacts. In the absence of such intelligence, we consider it prudent to incentivise further research and delay any proposed developments in the UK. Recognising the political realities of the planning and permitting process, we make a series of recommendations to protect public health in the event of hydraulic fracturing being approved in the UK.

  • Effect of biogeochemical interactions on bioaccessibility of arsenic in soils of a former smelter site in Republic of Korea 2016-12-01

    Abstract

    The total concentration-based regulations for soil remediation do not consider the possible changes in bioaccessibility of remaining arsenic (As) in soils due to biogeochemical interactions after remediation. This study used As-contaminated soil and pore water samples that were collected from the rice paddy and forest/farmland located in the vicinity of a former smelter site in Republic of Korea to elucidate the changes in As bioaccessibility due to biogeochemical interactions. Bioaccessibility and chemical forms of As in soils were determined by using an in vitro method and sequential extraction, respectively, and soil microbial community was evaluated. Bioaccessibility of As in the rice paddy soil samples was higher than that in the forest/farmland soil samples. This could be attributed to relatively higher dependence of bioaccessible As in the rice paddy soils on the soil concentration of iron (Fe), aluminum, or manganese, which could lead to greater changes in bioaccessible As via reductive dissolution. The strong linear relationship (R 2 = 0.90, p value ≤0.001) between the pore water As and Fe concentrations, and the greater portion of bacterial species related to reductive dissolution of Fe oxides in the rice paddies can support the higher As bioaccessibility promoted by reductive dissolution. Therefore, it is necessary to consider the potential changes in the bioaccessible As due to biogeochemical interactions in remediation of As-contaminated soils, particularly when soils are likely to be reused under reductive dissolution-promoting conditions (e.g., flooded conditions).

  • Health risk assessment of groundwater arsenic pollution in southern Taiwan 2016-12-01

    Abstract

    Residents of the Pingtung Plain, Taiwan, use groundwater for drinking. However, monitoring results showed that a considerable portion of groundwater has an As concentration higher than the safe drinking water regulation of 10 μg/L. Considering residents of the Pingtung Plain continue to use groundwater for drinking, this study attempted to evaluate the exposure and health risk from drinking groundwater. The health risk from drinking groundwater was evaluated based on the hazard quotient (HQ) and target risk (TR) established by the US Environmental Protection Agency. The results showed that the 95th percentile of HQ exceeded 1 and TR was above the safe value of threshold value of 10−6. To illustrate significant variability of the drinking water consumption rate and body weight of each individual, health risk assessments were also performed using a spectrum of daily water intake rate and body weight to reasonably and conservatively assess the exposure and health risk for the specific subgroups of population of the Pingtung Plain. The assessment results showed that 0.01–7.50 % of the population’s HQ levels are higher than 1 and as much as 77.7–93.3 % of the population being in high cancer risk category and having a TR value >10−6. The TR estimation results implied that groundwater use for drinking purpose places people at risk of As exposure. The government must make great efforts to provide safe drinking water for residents of the Pingtung Plain.