Diverse scientific fields and multidisciplinary expertise brought together within an international community

About SEGH


SEGH was established in 1971 to provide a forum for scientists from various disciplines to work together in understanding the interaction between the geochemical environment and the health of plants, animals, and humans.

SEGH recognizes the importance of interdisciplinary research, representing expertise in a diverse range of scientific fields, such as biology, engineering, geology, hydrology, epidemiology, chemistry, medicine, nutrition, and toxicology.

SEGH members come from a variety of backgrounds within the academic, regulatory, and industrial communities, thus providing a representative perspective on current issues and concerns.

SEGH membership is international and there are regional sections to coordinate activities in Europe, Americas and Asia/ Pacific.




Organisational Profile


President and Regional Chairs: President Dr Chaosheng Zhang

President European Chair Americas Chair Asia/Pacific Chair
Dr Chaosheng Zhang Dr Chaosheng Zhang Dr. Nurdan S. Duzgoren-Aydin, Prof. Kyoung-Woong Kim
University of Galway University of Galway

New Jersey City


chaosheng.zhang@nuigalway.ie     kwkim@gist.ac.kr

China-Ireland Consortium: Taicheng An (China), Yongguan Zhu (China) , Chaosheng Zhang (NUI Galway, Ireland)”


Organisational roles

Membership Secretary / Treasurer Secretary Webmaster
Mrs Anthea Brown Mr Malcolm Brown Dr Michael Watts
Rt. British Geological Survey Rt. British Geological Survey British Geological Survey
seghmembership@gmail.com segh.secretary@gmail.com seghwebmaster@gmail.com


SEGH is a member of the Geological Society of America's Associated Society Partnerships.  For more information on educational programmes, collaborations and communications link to www.geosociety.org.

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Potentially harmful elements in house dust from Estarreja, Portugal: characterization and genotoxicity of the bioaccessible fraction 2016-10-22


    Due to their behavioral characteristics, young children are vulnerable to the ingestion of indoor dust, often contaminated with chemicals that are potentially harmful. Exposure to potentially harmful elements (PHEs) is currently exacerbated by their widespread use in several industrial, agricultural, domestic and technological applications. PHEs cause adverse health effects on immune and nervous systems and can lead to cancer development via genotoxic mechanisms. The present study is an integrated approach that aims at assessing the genotoxicity of bioaccessible PHEs following ingestion of contaminated house dust. A multidisciplinary methodology associating chemical characterization of five house dust samples, extraction of the bioaccessible PHEs in gastric extracts by the unified BARGE method, determination of the bioaccessible fraction and in vitro genotoxicity of gastric extracts in adenocarcinoma gastric human (AGS) cells was developed. The five gastric extracts induced dose-dependent genotoxicity in AGS cells. Copper (bioaccessible concentration up to 111 mg/kg) was probably the prevalent PHE inducing primary DNA damage (up to 5.1-fold increase in tail DNA at 0.53 g/l of gastric extract). Lead (bioaccessible concentration up to 245 mg/kg) was the most prevalent PHE inducing chromosome-damaging effects (r = 0.55; p < 0.001 for micronucleated cells induction). The association of principal component analysis and Spearman’s correlations was decisive to understand the chromosome-damaging properties of the bioaccessible PHEs in AGS cells. This methodology could be used on a larger-scale study to provide useful information for science-based decision-making in regulatory policies, and a better estimation of human exposure and associated health risks.

  • Correlation of lithium levels between drinking water obtained from different sources and scalp hair samples of adult male subjects 2016-10-18


    There is some evidence that natural levels of lithium (Li) in drinking water may have a protective effect on neurological health. In present study, we evaluate the Li levels in drinking water of different origin and bottled mineral water. To evaluate the association between lithium levels in drinking water with human health, the scalp hair samples of male subjects (25–45 years) consumed drinking water obtained from ground water (GW), municipal treated water (MTW) and bottled mineral water (BMW) from rural and urban areas of Sindh, Pakistan were selected. The water samples were pre-concentrated five to tenfold at 60 °C using temperature-controlled electric hot plate. While scalp hair samples were oxidized by acid in a microwave oven, prior to determined by flame atomic absorption spectrometry. The Li content in different types of drinking water, GW, MTW and BMW was found in the range of 5.12–22.6, 4.2–16.7 and 0.0–16.3 µg/L, respectively. It was observed that Li concentration in the scalp hair samples of adult males consuming ground water was found to be higher, ranged as 292–393 μg/kg, than those who are drinking municipal treated and bottle mineral water (212–268 and 145–208 μg/kg), respectively.

  • On-road measurements of pollutant concentration profiles inside Yangkou tunnel, Qingdao, China 2016-10-18


    To obtain physical properties of pollutant concentrations encountered by vehicle commuters during travelling Yangkou tunnel (7.76 km) of Qingdao City, particle concentration measurements are accompanied by the measurements of gaseous species (CO and CO2). The field campaigns are on-road conducted from April 26 to September 23, 2014. Results demonstrate that the mean particle number concentrations observed within the tunnel at the normal traffic volume are 1.15 × 105 and 1.24 × 105 particles cm−3 for the southbound and northbound trip, respectively. Furthermore, the significance level of traffic volume to particle number concentration is analyzed by multivariate regression model. And a high correlation between pollutant concentrations and traffic intensity has been demonstrated. Consequently, the fuel-based emission factors of pollutants inside the tunnel are calculated and the personal exposures are derived. In addition, the profile of particle number concentration exhibits distinct dilution features between the exit of northbound bore and the exit of southbound bore. The explanation is attributed to the different long uphill trip within the tunnel. Results in this study offer meaningful understanding to explore the nature of pollutants within long tunnels.