About

Diverse scientific fields and multidisciplinary expertise brought together within an international community

About SEGH

 

SEGH was established in 1971 to provide a forum for scientists from various disciplines to work together in understanding the interaction between the geochemical environment and the health of plants, animals, and humans.

SEGH recognizes the importance of interdisciplinary research, representing expertise in a diverse range of scientific fields, such as biology, engineering, geology, hydrology, epidemiology, chemistry, medicine, nutrition, and toxicology.

SEGH members come from a variety of backgrounds within the academic, regulatory, and industrial communities, thus providing a representative perspective on current issues and concerns.

SEGH membership is international and there are regional sections to coordinate activities in Europe, Americas and Asia/ Pacific.

 

 

 

Organisational Profile

President: Dr Michael Watts, British Geological Survey. mwatts@bgs.ac.uk


Regional chairs:

African Chair European Chair Americas Chair Asia/Pacific Chair
TBC TBC Dr. Keith Torrance Prof. Taicheng An
TBC TBC

ERM

China

TBC

TBC

keith.torrance@uicumiaq.com

antc99@gig.ac.cn

 

Organisational roles

Membership Secretary / Treasurer Secretary Webmaster
Mrs Anthea Brown Dr Gillian Gibson Dr Daniel Middleton
Rt. British Geological Survey GBGibson Consulting

International Agency for Research on Cancer

(IARC-WHO)

seghmembership@gmail.com segh.secretary@gmail.com seghwebmaster@gmail.com

 

SEGH is a member of the Geological Society of America's Associated Society Partnerships.  For more information on educational programmes, collaborations and communications link to www.geosociety.org.

China-Ireland Consortium: Taicheng An (China), Yongguan Zhu (China) , Chaosheng Zhang (NUI Galway, Ireland)”

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Microplastics in the benthic invertebrates from the coastal waters of Kochi, Southeastern Arabian Sea 2018-08-01

    Abstract

    This study examined microplastic particles present in the benthic invertebrates Sternaspis scutata, Magelona cinta (deposit feeders) and Tellina sp. (suspension feeder) from the surface sediments of off-Kochi, southwest coast of India. The microplastic particles and thread-like fibres detected in these organisms were identified to be polystyrene by using DXR Raman microscope. Examination of the microplastic particle in Sternaspis scutata by epifluorescent microscopy showed fragmentation marks on the surface suggesting that the microplastic particle was degraded/weathered in nature. The study provides preliminary evidence of the presence of microplastics in benthic fauna from the coastal waters of India. However, further studies are required to understand the sources, distribution, fate and toxicity of the different types of microplastics in benthic invertebrates in order to identify any potential threats to higher trophic level organisms.

  • Mercury bioaccumulation in arthropods from typical community habitats in a zinc-smelting area 2018-08-01

    Abstract

    This study assessed the enrichment of mercury in the food web from the different community habitats in a zinc-smelting area of China. We used a nitrogen stable isotope technique to analyze trophic level relationships among arthropods and found that the first trophic level consisted of plants in the different community habitats, the second trophic level consisted of herbivores such as locusts and grasshoppers (primary consumers), and the third trophic level included spiders and mantes (secondary consumers). Mercury enrichment in the primary consumers was not evident, but enrichment in arthropods of the third trophic level was significant. The average of enrichment coefficients in spiders and mantes was greater than 1. The δ15N values indicated that mercury concentrations accumulated from primary producers to top carnivorous arthropods increased. In this zinc-smelting area, the biological amplification of mercury in the food web is significant. It is reasonable to assume that humans, located at the top of the food chain, are exposed to biomagnified levels of mercury.

  • Hydrogeochemical processes identification and groundwater pollution causes analysis in the northern Ordos Cretaceous Basin, China 2018-08-01

    Abstract

    It is necessary to identify the hydrogeochemical processes and analyze the causes of groundwater pollution due to the lack of knowledge about the groundwater chemical characteristics and the endemic diseases caused by groundwater pollution in the northern Ordos Cretaceous Basin. In this paper, groundwater chemical facies were obtained using the piper trilinear diagram based on the analysis of 190 samples. The hydrogeochemical processes were identified using ionic ratio coefficient, such as leaching, evaporation and condensation. The causes and sources of groundwater pollution were analyzed by correspondence analysis, and the spatial distribution and enrichment reasons of fluoride ion were analyzed considering the endemic fluorosis emphatically. The results show that leaching, evaporation and condensation, mixing, and anthropogenic activities all had significant impact on hydrogeochemical processes in the study area. However, cation exchange and adsorption effects were strong in the S2 and S3 groundwater flow systems, but weak in S1. Groundwater is mainly polluted by Mn and CODMn in the study area. The landfill leachate, domestic sewage, and other organic pollutants, excessive use of pesticides and fertilizers in agriculture, and pyrite oxidation from long-term and large-scale exploitation of coal are the sources of groundwater pollution. The S1 has the highest degree of groundwater pollution, followed by S2 and S3. High concentration of fluoride ion is mainly distributed in the north and west of study area. Evaporation and condensation and groundwater chemistry component are the most important causes of fluoride ion enrichment. The results obtained in this study will be useful for understanding the groundwater quality for effective management and utilization of groundwater resources and assurance of drinking water safety.