Journals

Diverse scientific fields and multidisciplinary expertise brought together within an international community

Journal of Environmental Geochemistry and Health

 

Environmental Geochemistry and Health is the Official Journal of the Society for Environmental Geochemistry and Health.  The journal publishes original research papers, research notes and reviews across the broad field of environmental geochemistry.

  • Environmental geochemistry establishes and explains links between the chemical composition of rocks and minerals and the health of plants, animals and people.
  • Beneficial elements regulate or promote enzymatic and hormonal activity, whereas other elements may be toxic.
  • Bedrock geochemistry controls the composition of soil and hence that of water and vegetation.
  • Pollution arising from the extraction and use of mineral resources distorts natural geochemical systems.
  • Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically.
  • Associated epidemiological studies reveal the possibility of links between the geochemical environment and disease.
  • Experimental research illuminates the nature or consequences of natural geochemical processes.

High quality research papers or reviews dealing with any aspect of environmental geochemistry are welcomed.  Submission of papers which directly link health and the environment are particularly encouraged.  Papers may be theoretical, interpretative or experimental.  Authors shoud refer to  www.springer.com/10653 for more information and authors' instructions.

 

Stay informed of new journal issues! Sign up for the Table of Contents Alert here

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh 2017-01-18

    Abstract

    Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.

  • Historical trends of organochlorine pesticides (OCPs) recorded in sediments across the Tibetan Plateau 2017-01-17

    Abstract

    Sediment cores from four lakes across the Tibetan Plateau were used as natural archives to study the time trends of organochlorine pesticides (OCPs). The total concentrations of dichlorodiphenyltrichloroethane (ΣDDT) and hexachlorocyclohexane isomers (ΣHCH) were in the range of 0.04–1.61 and 0.08–1.88 ng/g based on dry weight (dw), while the input fluxes were in the range of 0.3–236 and 0.7–295 pg/cm2/y in the core sediments, respectively. The input fluxes of ΣDDT and ΣHCH generally peaked in sediment layers corresponding to the 1970s–1990s and peaked in top sediment layers. The ratio of α/γ-HCH decreased in the top layer sediments, implying that the contribution of lindane (pure γ-HCH) has been increasing in recent years. In addition, the ratio of o,p′-DDT/p,p′-DDT increased significantly over the last 15–20 years, suggesting that dicofol (characterized by high ratio of o,p′-DDT/p,p′-DDT about 7.0) has recently become a relatively more important source of DDT compared to technical DDT itself. The time trends of OCPs recorded in lake sediments examined the impact on such remote alpine regions by human activities.

  • Estimation of the daily soil/dust (SD) ingestion rate of children from Gansu Province, China via hand-to-mouth contact using tracer elements 2016-12-19

    Abstract

    A total of 60 children (31 males and 29 females) between the ages of 3 and 12 years were randomly selected from Lanzhou City in Gansu Province, northwest China. Hand (soil/dust) SD samples from these children were collected using hand wipes. We determined the approximate amounts of hand SD and the concentrations of three tracer soil elements (Ce, Y, and V) in these samples. The approximate amounts of hand SD ranged from 42.28 to 173.76 mg, with a median value of 85.42 mg. In addition, the mean amounts of hand SD estimated using the concentrations of Ce, Y, and V in the samples were 4.63, 3.43, and 3.42 mg, respectively. The amount of hand SD varied greatly among the age groups: primary school children had more hand SD than kindergarten children, males had more hand SD than females, and children from rural areas had more hand SD than those from urban areas. The rates of daily ingestion of hand SD for kindergarten and primary school children were estimated to be 7.73 and 6.61 mg/day, respectively.